
The official LinuxCNC EtherCAT driver (based on the IgH EtherCAT master userspace library) does not currently support Ethernet over EtherCAT (EoE) because it lacks
handling for non-application datagrams, which are essential for tunneling standard Ethernet traffic (e.g., TCP/IP) through the EtherCAT segment. This is required for
EoE-capable slaves like the Inovance SV660N servo drive, which uses EoE to enable networked access for configuration, diagnostics, and parameter tuning via tools
like InoDriverShop without disrupting real-time CoE (CANopen over EtherCAT) process data.

EoE support in the IgH master is available but requires explicit integration in the application layer. The core issue is that the standard ecrt_master_send() function
only handles application datagrams (e.g., PDO/SDO for motion control), while EoE relies on ecrt_master_send_ext() for non-application datagrams (e.g., tunneled
Ethernet frames). This function is kernel-only in the stock IgH library but can be ported to userspace via ioctl calls when using real-time frameworks like Xenomai or
RTAI.

Prerequisites

Real-time kernel: Use a PREEMPT-RT or RTAI kernel for low-latency cyclic execution. Xenomai is recommended for userspace real-time support (RTDM).
IgH EtherCAT master build : Compile with EoE enabled:

git clone https://gitlab.com/etherlab.org/ethercat.git
cd ethercat
./bootstrap
./configure --sysconfdir=/etc --enable-userlib --enable-eoe --with-userlib-rt=posix --disable-8139too
make
sudo make install

--enable-eoe : Activates the EoE module, which creates a virtual Ethernet interface (eoe0) for tunneling.
--enable-userlib : Builds the userspace library (libethercat).

linuxcnc-ethercat build: After the above, rebuild the driver:

git clone https://github.com/linuxcnc-ethercat/linuxcnc-ethercat.git
cd linuxcnc-ethercat
make configure
make
sudo make install

SV660N-specific setup (from Inovance documentation):
Enable the virtual Ethernet port on the slave via SDO (object 0xF800:01, bit 14 = 0) or ESI XML import in your configurator.
Assign IPs in the same subnet (e.g., master: 192.168.198.1/24, slave: 192.168.198.x/24).
Use the master's "Sync slave gateway" equivalent (manual IP assignment via SDO if needed).

Suggested Code Modifications

The key changes are in src/ethercat.c (the main driver source) to integrate ecrt_master_send_ext() into the cyclic real-time loop. This loop (typically in
update_pins() or the RT task handler) already calls ecrt_master_send() and ecrt_master_receive() periodically (e.g., every 1 ms). Add EoE handling there.

1. Add userspace ecrt_master_send_ext() declaration:

In src/ethercat.h (or a new header), add a conditional prototype for RTDM/Xenomai userspace:

#ifdef EC_RTDM
#include <rtdm/rtdm.h> // For Xenomai RTDM
size_t ecrt_master_send_ext(ec_master_t *master);
#endif

2. Implement userspace ecrt_master_send_ext() :

Create a new file src/eoe_userspace.c (or inline in ethercat.c) with an ioctl-based port (inspired by community patches like ribalda/ethercat for
RTDM support):

#ifdef EC_RTDM
#include <rtdm/ethercat.h> // Adjust for your RT framework

size_t ecrt_master_send_ext(ec_master_t *master) {
 int ret;
 size_t sent_bytes = 0;

 // Use ioctl to trigger non-app datagram send (EoE frames)
 ret = rt_dev_ioctl(master->device, EC_IOCTL_SEND_EXT, &sent_bytes);
 if (ret) {
 rt_printk("EoE send_ext failed: %d\n", ret);
 return 0;
 }
 return sent_bytes;
}
#endif

This calls the kernel's EC_IOCTL_SEND_EXT via RTDM ioctl, queuing EoE datagrams without blocking the RT cycle.
Compile with -DEC_RTDM -DEC_EOE flags in Makefile.am or configure.ac .

3. Integrate into the cyclic loop:

3. Integrate into the cyclic loop:

In src/ethercat.c , locate the real-time update function (e.g., ethercat_rt_thread() or update_pins() in the HAL component). It looks similar
to:

// Existing cyclic loop (simplified)
static void update_pins(void) {
 // ... HAL pin updates ...
 if (ecrt_master_send(master) < 0) { /* error */ }
 if (ecrt_master_receive(master) < 0) { /* error */ }
 // ... process domains ...
}

Modify to include EoE send after application send (to prioritize RT data):

static void update_pins(void) {
 // ... HAL pin updates ...

 // Send application datagrams first
 if (ecrt_master_send(master) < 0) {
 lcec_error("Failed to send");
 }

 // Send non-app datagrams (EoE) if enabled
#ifdef EC_RTDM
 if (eoe_enabled) { // Flag from config (e.g., INI param)
 ecrt_master_send_ext(master);
 }
#endif

 if (ecrt_master_receive(master) < 0) {
 lcec_error("Failed to receive");
 }

 // ... process domains ...
}

Add a config flag eoe_enabled (e.g., via lcec.ini or HAL pin) to toggle EoE without recompiling.
Call this every cycle (e.g., 500 µs–1 ms, matching your EtherCAT update rate).

4. EoE module activation:

In src/main.c or init code (e.g., lcec_init()), after ecrt_master_activate() :

#ifdef EC_EOE
if (eoe_enabled) {
 // Request EoE virtual interface creation
 ecrt_master_eoe_request(master); // If exposed in userspace lib
 // Or via SDO to slaves: enable EoE mailbox (0xF800:01 = 0x0000)
}
#endif

Load the EoE kernel module: sudo modprobe ec_eoe (creates eoe0 interface).

5. Network configuration (post-build, runtime):

Bring up the virtual interface:

sudo ip link set eoe0 up
sudo ip addr add 192.168.198.1/24 dev eoe0 # Match SV660N subnet

Enable IP forwarding on the host: sudo sysctl -w net.ipv4.ip_forward=1 .
Add routes for slave access (e.g., for InoDriverShop): sudo ip route add 192.168.198.0/24 dev eoe0 .
For SV660N, use SDO writes (via lcec conf or tool) to set slave IP (e.g., 192.168.198.2) and enable virtual port.

Testing and Validation

Basic EoE check: After loading, verify eoe0 interface with ip link show . Ping the SV660N IP from the host.
SV660N integration: Import the updated ESI XML (with EoE params) into your lcec config. Scan slaves with ethercat slaves —EoE slaves should show as
"EoE capable."
Full stack: Run LinuxCNC with a test HAL file including your modified driver. Monitor with ethercat eoe for frame stats. Use InoDriverShop over the EoE IP
to tune the drive while CoE runs motion.
Debug: Enable IgH debug (echo 0x2000 > /proc/ethercat/master0/debug) and check dmesg for EoE errors. If cycles jitter >1 µs, tune send interval with
ecrt_master_set_send_interval(master, 1000) (1 ms).

Limitations and Alternatives

Latency: Userspace EoE adds ~10–50 µs overhead; test under load. If unstable, switch to full kernel modules (RTAI kernel, --disable-userlib in IgH
configure).
Complexity: Full EoE routing (e.g., NAT for external PCs) requires host firewall rules (iptables -t nat -A POSTROUTING -o eoe0 -j MASQUERADE).
If modifications fail: Disable EoE temporarily (--disable-eoe in IgH configure) for CoE-only SV660N operation, or use a commercial master like Beckhoff
TwinCAT (supports EoE natively but not open-source).
Community resources: See LinuxCNC forum thread on EoE config and ribalda/ethercat repo for patches. Submit a PR to the repo for upstreaming.

These changes should enable basic EoE tunneling for SV660N drives while preserving LinuxCNC's real-time performance. Test incrementally to avoid RT deadlocks.

	Prerequisites
	Suggested Code Modifications
	Testing and Validation
	Limitations and Alternatives

