## HEIDENHAIN



Product Information

## IDP 100 Series

Interpolation and Digitizing Electronics

## IDP 101/IDP 181/IDP 182 <br> Interpolation and Digitizing Electronics

HEIDENHAIN linear, rotary and angle encoders operate on the principle of photoelectrically scanning very fine gratings. These encoders normally produce sinusoidal scanning signals with levels of approximately $11 \mu$ App (current signals) or approx. 1 VPP (voltage signals). The subsequent electronics first interpolate the scanning signals and then convert them into square-wave pulses (digitizing). The interpolation and digitizing circuitry is either integrated in the NC control (e. g. a HEIDENHAINTNC) or in the numerical display (e.g. ND or POSITIP from HEIDENHAIN), or is available as a separate unit: IDP 18x (for voltage signals $A, B$ and $R$ ) or IDP 101 (for current signals $I_{1}, I_{2}$ and $I_{0}$ ).

The IDP provides two square-wave pulse trains ( $U_{\mathrm{a} 1}$ and $U_{a 2}$ ) and a reference pulse $\mathrm{U}_{\mathrm{a} 0}$ as output signals. Within one signal period, each of the four signal edges of $U_{a 1}$ and $U_{a 2}$ can serve as a counting pulse. The distance between two subsequent edges of $U_{a 1}$ and $U_{a 2}$ is one measuring step. After 5 -fold interpolation, for example, this distance is $1 / 20$ th of a grating period.

The adjustment to the subsequent electronics is quite easy. The interpolation, edge separation and reference pulse width are adjusted using PCB switches. Failure indication consists of a separate fault detection signal, or in addition, a switch to high impedance in the outputs $U_{a 1}$ and $U_{a 2}$.


IDP 181/IDP 182 interpolation and digitizing electronics
Input: ~ 1 VPP
Output: $\square-T T L$
The IDP 18x series features one input for incremental linear or angle encoders with sinusoidal output signals and a signal level of 1 V Pp. The IDPs provide TTL-compatible square-wave output signals.

The $5 \mathrm{~V} \pm 5 \%$ power supply must be provided by the subsequent electronics.

Interpolation and minimum edge separation a of the output signals or the resulting maximum input frequency are adjustable in the IDP. The hysteresis of the incremental output signals of the IDP 181 is fixed at "no hysteresis;" the IDP 182 is fixed at "with hysteresis."

IDP 101 interpolation and digitizing electronics
Input: $\sim 11 \mu$ App
Output: ワ】TTL
The IDP 101 series features one input for incremental linear or angle encoders with sinusoidal output signals and a signal level of $11 \mu$ App. This IDP provides TTLcompatible square-wave output signals.

The $5 \mathrm{~V} \pm 5 \%$ power supply must be provided by the subsequent electronics.

Interpolation and minimum edge separation a of the output signals or the resulting maximum input frequency are adjustable in the IDP. The hysteresis of the incremental output signals of the IDP 101 is fixed at "no hysteresis."

|  | Possible settings IDP 181 |  | IDP 182 |  |  |  | Minimum edge separation a |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Interpolation | 5-fold | 10-fold | 20-fold | 25-fold | 50-fold | 100-fold |  |
| Input frequency | 200 kHz | 200 kHz | 100 kHz | 80 kHz | 40 kHz | 20 kHz | $0.100 \mu \mathrm{~s}$ |
|  | 200 kHz | 100 kHz | 50 kHz | 40 kHz | 20 kHz | 10 kHz | $0.220 \mu \mathrm{~s}$ |
|  | 133 kHz | 66 kHz | 33 kHz | 26 kHz | 13 kHz | 6.6 kHz | $0.345 \mu \mathrm{~s}$ |
|  | 100 kHz | 50 kHz | 25 kHz | 20 kHz | 10 kHz | 5 kHz | $0.465 \mu \mathrm{~s}$ |
|  | 80 kHz | 40 kHz | 20 kHz | 16 kHz | 8 kHz | 4 kHz | $0.585 \mu \mathrm{~s}$ |
|  | 50 kHz | 25 kHz | 12.5 kHz | 10 kHz | 5 kHz | 2.5 kHz | $0.950 \mu \mathrm{~s}$ |
|  | 25 kHz | 12.5 kHz | 6.25 kHz | 5 kHz | 2.5 kHz | 1.25 kHz | $1.925 \mu \mathrm{~s}$ |
| Reference pulse width | $90^{\circ}$ elec. or $270^{\circ}$ elec. |  |  |  |  |  |  |
| Fault indication | Via fault detection signal $U_{a S}$, or additionally $U_{a 1} / U_{a 2}$ at high-impedance |  |  |  |  |  |  |

Default values are printed bold.

|  | Possible settings IDP 101 |  | Minimum edge separation a |
| :---: | :---: | :---: | :---: |
| Interpolation | 5-fold | 10-fold |  |
| Input frequency | 50 kHz | 25 kHz | $0.950 \mu \mathrm{~s}$ |
|  | 25 kHz | 12.5 kHz | 1.925 ¢ |
| Reference pulse width | $90^{\circ}$ elec. or $270^{\circ}$ elec. |  |  |
| Fault indication | Via fault detection signal $U_{a S}$, or additionally $U_{a 1} / U_{a 2}$ at high-impedance |  |  |

Default values are printed bold.

## Specifications and Dimensions

| General specifications | IDP 101 | IDP 181 | IDP 182 |
| :---: | :---: | :---: | :---: |
| Power supply | $5 \mathrm{~V} \pm 5 \%$ |  |  |
| Current consumption ${ }^{1 /}$ | $\leq 100 \mathrm{~mA}$ | $\leq 120 \mathrm{~mA}$ | $\leq 130 \mathrm{~mA}$ |
| Cable length Input | $\leq 30 \mathrm{~m}$ at $\mathrm{l}_{\text {Encoder }} \leq 120 \mathrm{~mA}$ | $\begin{aligned} & \leq 30 \mathrm{~m} \text { at } \mathrm{I}_{\text {Encoder }} \leq 120 \mathrm{~mA} \\ & \leq 60 \mathrm{~m} \text { at Up }>4.9 \mathrm{~V} \end{aligned}$ |  |
| Output | $\leq 50 \mathrm{~m}$ with HEIDENHAIN cable and differential line receiver at the subsequent electronics input |  |  |
| Vibration 55 to 2000 Hz Shock 6 ms | $\begin{aligned} & \leq 20 \mathrm{~m} / \mathrm{s}^{2} \\ & \leq 300 \mathrm{~m} / \mathrm{s}^{2} \end{aligned}$ |  |  |
| Operating temperature Storage temperature | $\begin{array}{r} 0 \text { to } 70^{\circ} \mathrm{C} \\ -30 \text { to } 80^{\circ} \mathrm{C} \end{array}$ |  |  |
| Protection IEC 60529 | IP 00 |  |  |
| Weight | Approx. 0.1 kg |  |  |

## Caution:

The permitted limits for the power supply of the connected encoder must not be exceeded.
${ }^{1)}$ Without current consumption by the encoder and without output load:
Subsequent electronics with the recommended input circuitry increase current consumption by approx. 80 mA


## Electrical Connection

## Pin Layout

Input for IDP 181/IDP 182

| 10-pin PCB connector |  |  |  |  |  |  | 12-pin M23 flange socket |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Power supply |  |  |  | Incremental signals |  |  |  |  |  | Other signals |  |
| - | 1b | 2b | 1a | 2a | 5b | 5a | 4b | 4a | 3b | 3a | / | / |
| [1] | 12 | 2 | 10 | 11 | 5 | 6 | 8 | 1 | 3 | 4 | 7 | 9 |
|  | $U_{\text {P }}$ | Sensor Up | OV | Sensor 0 V | A+ | A- | B+ | B- | R+ | R- | Vacant | Vacant |
| $\longrightarrow \leqslant$ | Brown/ Green | Blue | White/ Green | White | Brown | Green | Gray | Pink | Red | Black | / | 1 |

Input for IDP 101

| 10-pin PCB connector |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Power supply |  |  |  | Incremental signals |  |  |  |  |  |  |
| - | 1b | 2b | / | 1a | 5b | 5 a | 4b | 4a | 3b | 3a | 2a |
| ए-1 | 3 | 4 | Housing | 9 | 1 | 2 | 5 | 6 | 7 | 8 | / |
|  | $U_{\text {P }}$ | OV | External shield | Inside shield | $\mathrm{I}_{1}+$ | $\mathbf{I}_{1-}$ | $\mathrm{I}_{2}+$ | $\mathrm{I}_{2}$ | $\mathrm{I}_{0}+$ | $\mathrm{I}_{0}$ | Vacant |
| こ | Brown | White | / | White/ Brown | Green | Yellow | Blue | Red | Gray | Pink | / |

Output

| 12-pin PCB connector <br> b |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Power supply |  |  |  | Incremental signals |  |  |  |  |  | Other signals |  |  |
| - | 2a | 2b | 1a | 1b | 6b | 6a | 5b | 5a | 4b | 4a | 3a | 3b | / |
| ■ | 12 | 2 | 10 | 11 | 5 | 6 | 8 | 1 | 3 | 4 | 7 | / | 9 |
|  | $U_{P}$ | Sensor Up | OV | Sensor 0 V | $\mathrm{U}_{\mathrm{a} 1}$ | $\overline{\mathrm{U}_{\mathrm{a} 1}}$ | $\mathrm{U}_{\mathrm{a} 2}$ | $\overline{\mathrm{U}_{\mathrm{a} 2}}$ | $\mathrm{U}_{\mathrm{a} 0}$ | $\overline{\mathrm{U}_{\mathrm{a} 0}}$ | $\overline{\mathrm{U}_{\mathrm{as}}}$ | $\mathrm{U}_{\mathrm{aS}}$ | Vacant |
| $\longrightarrow \leqslant$ | Brown/ Green | Blue | White/ Green | White | Brown | Green | Gray | Pink | Red | Black | Violet | / | 1 |

Shield is on housing; $\mathbf{U}_{\mathbf{P}}=$ power supply
Sensor: The sensor line is connected in the encoder with the corresponding power line.
Vacant pins or wires must not be used!
Color assignment applies only to extension cable.

## Connecting Elements and Cables



## Input

## IDP 18x input assembly

Wired with 12-pin flange socket (female) and 10-pin PCB connector
Length: 70 mm
Id. Nr. 297051-08

IDP 101 input assembly
Wired with 9-pin flange socket (female)
and 10-pin PCB connector

| Length | Id. Nr. |
| :--- | :--- |
| 70 mm | $298071-02$ |
| 110 mm | $298071-09$ |
| 150 mm | $298071-10$ |

## Output

## IDP output assembly

Wired with 12-pin flange socket (male) and 12-pin PCB connector
Length: 70 mm
Id. Nr. 297051-01

## HEIDENHAIN

DR. JOHANNES HEIDENHAIN GmbH
Dr.-Johannes-Heidenhain-Straße 5
83301 Traunreut, Germany
(
EAXI +49 (8669) 5061
E-Mail: info@heidenhain.de
www.heidenhain.de

