Thank you very much for purchasing our AC servo products.

This manual will be helpful in the installation, wiring, inspection and operation of Our AC servo drive. Before using the product, please read this user manual to ensure correct use.

Contents of this manual

This manual is a user guide that provides the information on how to operate and maintain H3N series AC servo drives. The contents of this manual are including the following topics:

Installation of AC servo drives

Configuration and wiring

Parameter settings

Control functions and adjusting methods of AC servo drives

Trial run steps

Troubleshooting

Who should use this manual

This user manual is intended for the following users:

Those who are responsible for installling or wiring.

Those who are responsible for operating or programming.

Those who are responsible for troubleshooting.

Important precautions

Before using the porduct, please read this user manual thoroughly to ensure correct use and store this manual in a safe and handy place for quick reference whenever to be necessary. Besides, please observe the following precautiongs:

Do not use the product in a potentially explosive environment.

Install the porduct in a clean and dry location free from corrosive and inflammable gases or liquids

Ensure that the drive is correctly connected to a ground. The grounding metho must comply with the electrical standard of the country.

Do not connect a commercial power supply to the U,V,W terminals of drives,otherwise the drive will be damaged.

Do not attach, modify and remove wiring when power is applied to the AC servo drive.

Do not disconnect the drive and motor when the power is ON.

Do not touch the heat sink of the drive duiring operation.

If you do not understand, please contact your local sales representative. Please place this user manual in a safe location for future reference.

Safety Caution

Installation

◆The applications should be kept away from the water vapor, corrosive gases, flammable gases and so on. Otherwise it may result in electric shock, fire or personal injury.

- ◆The application environment should be without direct sunlight,dust,salt and metal powder,and so on.
- ◆The applications should be kept away from the place which the oil and pharmaceutical will attach or be dipped.

Wiring

- igspace Connect the ground terminals to a class-3 ground (Ground resistance should not exceed 100 Ω)
- ◆The H series AC servo drive is suitable for AC 220V single-phase or three-phase power.Please do not connect to the power AC 380V.Failure to observe this precaution may damage the drive.

- ◆Do not connect any power supplies to the U,V,W terminals.Failure to observe this caution may result in injury,damage to the drive or fire.
- ◆Ensure that all screws,wire terminations and connectors are secure on the power supply,servo drive and motor. Failure to observe this precaution may result in damage, fire or personal injury.
- ◆In order to prevent fire hazard and accidents, please form the wiring by the cable specifications outlined in this manual.

Operation

◆Before starting the operation with a mechanical system connected, change the drive parameters to match the user-defined parameters of the mechanical system. Starting the operation without matching the correct parameters may result in servo drive or motor damage, or damage to the mechanical system.

- ◆Do not touch or approach any rotating parts (e.g. heatsink) while the servo is running. Failure to observe this caution may cause serious personal injury.
- ◆Do not remove the operation panel while the drive is connected to an electrical power source otherwise electrical shock may result.
- ◆ Do not disassemble the servo drive as electrical shock may result.

Ш

- ◆Do not connect or disconnect wires or connectors while power is applied to the drive.
- ◆Wait at least 10 minutes after power has been removed before touching any drive or motor teminals or performing any wiring or inspection as an electrical charge may still remain in the servo drive.

Important warn

Before you use the driver, please do notice the follows:

- 1. H3N series drivers are AC 220V power input. Do not use AC 380V input. Or the drivers will be damaged, and it possibly cause hurt to people.
- 2. Inputs of H3N-LD are R / T ports with single-phase power, and the S port is not used.
- 3. Please set the right motor code parameter PA1 to match the motor and the driver.
- 4. The input voltage of pulse and sign is DC 5V. If your controller output a DC 24V singal for the pulse and sign, a $1.2k\Omega$ resistance must be cascaded on pin 26(pulse+) and pin 24(sign+). Or the drivers will be damaged.
- 5. When high speed start-stop is frequent needed, the driver must add break resistor. Please follow the user manual or contact our technical support, use a right break resistor for the driver.
- 6. Please set the right Electronic Gear Ratio parameter PA12, PA13.
- 7. Please set the right parameter PA14 for different mode of pulse input.
- 8. The change of PA1, PA14, PA35 is active after repower. So when you change these paramaters, you should shut down the power and repower.
- 9. If you use a break motor, please follow chapter 5.4.
- 10. The motor code of H3N-ED is different from the others. Please note chapter 7 for details.
- 11. If client decide to make motor encoder cable which connect the motor encoder and CN1 of the driver by yourself, please do use shielded cable, and the length should less than 15m. Normal cable can't be used.
- 12. If client decide to make the control cable which connect the controller and CN2 of the driver by yourself, shidlded cable should be used, and the length should less than 15m.

Contents

IMPOR	MPORTANT WARNV			
СНАРТ	ER 1	H3N DRIVER SUMMARY	1	
1.1	THE	H3N SERIES	1	
1.2		EARANCE		
1.3	Ex	PLANATION FOR PORTS OF DRIVER	2	
1.3	3.1	P / D / C port	2	
1.3	3.2	R / S / T port	2	
1.3	3.3	r / t port	2	
1.3	3.4	U / V / W / PE port	3	
1.3	3.5	CN1 port	3	
1.3	3.6	CN2 port	3	
1.3	3.7	CN3 port	3	
СНАРТ	ER 2	INSTALLATION AND WIRING	4	
2.1	UNP	ACKING CHECK	4	
2.2	SIZE	OF DRIVERS	5	
2.3	SIZE	DATAS FOR INSTALLATION	6	
2.4	INST	ALLATION ENVIRONMENT	6	
2.5	INST	ALLATION PROCEDURE AND MINIMUM CLEARANCES	7	
2.6	Con	NECT PORTS AND CABLE	9	
CHPAT	ER 3	PORTS AND CONNECT	12	
3.1	Sum	MARY	12	
3.2	ENC	ODER CONNECTOR CN1	12	
3.2	2.1	The Layout and View of CN1	12	
3.2	2.2	Signal definition for CN1	13	
3.3	THE	LAYOUT AND VIEW OF CN2	13	
3.4	SIGN	IALS EXPLANATION OF CONNECTOR CN2	14	
3.5	I/O I	NTERFACE TYPE	16	
3.5	5.1	Digital signal input interface	16	
3.5	5.2	Digital signal output interface	16	
3.5	5.3	Position pulse input interface	17	
3.5	5.4	Analog signal input interface	18	
3.5	5.5	Encoder signal output interface	19	
3.5	5.6	Encoder Open-collector Z-pulse output interface	20	
3.5		Encoder feedback signal input interface		
3.6	STAN	NDARD CONNECTION EXAMPLE	21	
3.6	5.1	Position control mode	21	
3.6	6.2	Speed / Torque control mode	22	
СНАРТ	ER 4	DISPLAY AND OPERATION	23	
4.1	DES	CRIPTION OF THE DIGITAL KEYPAD	23	
4.2	MAIN	I MENU	24	
43	Mon	IITOR DISPLAY (DP)	24	

	4.4	PARAMETER SETTING (PA-	-)	25
	4.5	PARAMETER MANAGEMENT	(EE)	26
	4.6	SPEED TRIAL RUN WITHOUT	LOAD (SR)	27
	4.7	JOG TRIAL RUN WITHOUT LO	OAD (JR)	27
	4.8	ZERO-OFFSET ADJUSTMENT	-	28
С	HAPTE	ER 5 TRIAL RUN AN	D TUNING PROCEDURE	29
	5.1	INSPECTION WITHOUT LOAD		29
	5.1.	1 Appling power to the	drive	30
	5.1.	2 JOG trial run without	load	30
	5.1.	3 Speed trial run withou	ut load	32
	5.2	POSITION CONTROL MODE		33
	5.2.	1 Simple position contro	ol system	33
	5.2.		osition control	
	5.2.	3 Electronic gear ratio		37
	5.2.	4 Position proportional	gain	39
	5.3	···		
	5.3.		ment	
	5.3.		control loop	
	5.3.		on control loop	
	5.4	•		
	5.4.		ectromagnetic brake	
	5.4.		gnetic brake	
	5.5		9	
	5.5.			
	5.5.	• .	eration	
	5.5.	•		
	5.6	· ·	TICS	
	5.6.		load inertia	
_		·		
С	HAPTE	ER 6 PARAMETERS		49
	6.1	PARAMETER SUMMARY		49
	6.2	DETAILED PARAMETER SETT	TING	52
С	HAPTE	ER 7 MATCH SERVO	D DRIVER AND SERVO MOTOR	60
	7.1	MOTOR CODE LIST FOR H3N	N-LD	61
	7.2	MOTOR CODE LIST FOR H3N	N-DD	62
	7.3	MOTOR CODE LIST FOR H3N	N-TD	63
	7.4		N-FD	
	7.5		N-GD	
	7.6		N-ED	
С	HAPTE		OTING	
	8.1	FALIIT MESSACES TABLE		6
			RRECTIVE ACTIONS	
	O.Z	TOTEINTIAL CAUSE AND CO	NECTIVE #CTIONS	กร

CHAPTER 9	CONNECTION TO MOTOR	72
CHAPTER 10	SYSTEM CONNECTION	73

Chapter 1 H3N Driver summary

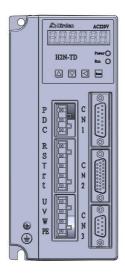
1.1 The H3N series

H3N series drivers include H3N-LD,H3N-DD,H3N-TD,H3N-FD,H3N-GD and H3N-ED. P / D / C, R / S / T, r / t, U / V / W / PE are power port. The power port of H3N-ED is different from the others.

CN1, CN2, CN3 are signal port.

The power level of H3N series drivers show as table 1-1:

Table 1-1 Power level of H3N series drivers


TYPE	IPM (A)	POWER LEVEL (kw)
H3N-LD	15	0.5
H3N-DD	20	0.9
H3N-TD	30	1.5
H3N-FD	50	2.5
H3N-GD	65	3.5
H3N-ED	30	1.5

1.2 Appearance

The appearance of H3N-TD, H3N-FD, H3N-GD are the same. They all include P / D / C, R / S / T / r / t, CN1, CN2, CN3.

H3N-LD,H3N-DD don't include P / D / C and CN3.

H3N-ED don't include P / D / C.

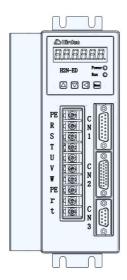


Figure 1-1 appearance of H3N

1.3 Explanation for ports of driver

1.3.1 P/D/C port

- 1. P / D / C port is used for add break resistor.
- 2. Do not connect P and C direactly, that will damage the driver.
- 3. When P connect to D, the inner break resistor is active. P is connected with D when the drivers leave the factory.
- 4. If a extra break resistor is needed, the extra resistor is connected between P and C.
- 5. If P and D is connected, and P, C is also connected, the inner break resistor and the extra break resistor are both active.

1.3.2 R/S/T port

R / S / T port is AC 220V 3PH power input port.

Do not use AC 380V power input, that will damage the driver, or even cause hurt to people.

The input port odH3N-LD is R / T with singal-phase power. Port S is not used.

1.3.3 r / t port

This port is support power for control system in driver. AC 220V must be required.

Do not use AC 380V. That will damage the driver.

1.3.4 **U/V/W/PE** port

U / V / W / PE is power output of driver, it support power for motor.

The power cable is always support by the manufactor, if client want make it by yourself, please use the right wire. And you must ensure the order of U / V / W / PE is correct, or the motor maybe out of control.

Please follow table 2-3, table 2-4.

1.3.5 CN1 port

CN1 port is encoder singal port, used for receive the singal of motor encoder.

H3N series drivers just match incremental photo-electricity encoder.

Incremental photo-electricity encoder include 6 singals: U V W A B Z. It takes differential singal output, and include 15 wire output.

The define of CN1 pins shows as table 3-1.

1.3.6 **CN2** port

CN2 port is control singal port, the define of CN2 pins show as table 3-2.

1.3.7 CN3 port

This port is use for communication between driver and PC.

The port is reserved in H3N series.

Chapter 2 Installation And wiring

This chapter is about strorage and installation environment, as well as the installation considerations for the H3N series AC Servo Drive.

Plesae do notice these:

- 1. If the driver is damaged in transportation, do not power it. Please contact the provider.
 - 2. Do not power the driver with AC 380V.
 - 3. Please ensure PE is weel conncet with ground.

2.1 Unpacking Check

After receiving the AC servo drive, please check for the following:

Ensure that the product is what you have ordered.

Verify the part number indicated on the nameplate corresponds with the part number of your order (Please refer to Section 1.1 and 1.3 for details about the model explanation).

Check for damage.

Please inspect the unit to insure that it was not damaged duiring shipment.

Ensure that the servo motor shaft freely. Rotate the motor shaft by hand, a smooth rotation will indicate a good motor. However, a servo motor with an electromagnetic brake can not be rotated manually.

Check for loose screws.

Ensure that all necessary screws are tight and secure.

If any items are damaged or incorret, please inform the distributor whom you purchased the product from or your local Hirden sales representative.

2.2 Size of drivers

Size of H3N series drivers show as figure 2-1 and table 2-1.

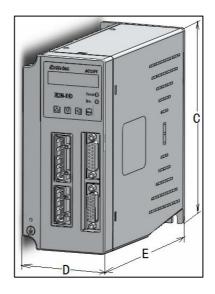


Figure 2-1 size sketch map

Table 2-1 size datas for H3N series drivers

Туре	C(mm)	D (mm)	E(mm)
H3N-LD	170	77	172
H3N-DD	170	77	172
H3N-TD	185	82	182
H3N-FD	200	92	186
H3N-GD	215	105	207
H3N-ED	195	97	155

2.3 Size datas for installation

The size for installation is show as figure 2-2 and table 2-2.

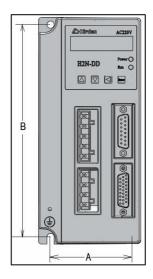


Figure 2-2 size sketch map of installation

Table 2-2 installation size data for H3N series driver

Size data of installation			
Туре	A(mm)	B(mm)	
H3N-LD	60	160	
H3N-DD	60	160	
H3N-TD	65	175	
H3N-FD	75	189.3	
H3N-GD	88	203.5	
H3N-ED	25	208	

2.4 Installation Environment

The operating temperature for the H series servo drive is from $0^{\circ}\mathbb{C}$ (32°F) to 55°C (131°F). If the ambient temperature of servo drive is higher than 45°C, please install the drive in a well-ventilated location and do not obstruct the airflow for the cooling fan. The ambient temperature of servo drive for long-term reliability should be under $45^{\circ}\mathbb{C}(113^{\circ}\text{F})$.

If the servo drive and motor are installed in a control panel, please ensure sufficient

space around the units for heat dissipation. Pay particular attention to vibration of the units and check if the vibration has impacted the electric devices in the control panel.

Please observe the following cautions when selecting a mounting location.

- 1. The ambient humidity should be less than 80%, without condensing.
- 2. Please keep the servo drive or motor away from the heat-radiating elements or in direct sunlight.
- 3. Please do not mount the drive or motor in a location subjected to corrosive gases, liquids or airborne dust or metallic particles.
- 4. Please do not mount the servo drive or motor in a location where it will be subjected to high levels of electromagnetic radiation.
- 5. Please do not mount the servo drive or motor in a location where temperatures and humidity will exceed specification.
- 6. Please do not mount the servo drive or motor in a location where vibration and shock will exceed specification.

2.5 Installation Procedure and Minimum Clearances

Incorret installation may result in a drive malfunction or premature failure of the drive. Please follow the guidelines in this manual when installing the servo drive.

- 1. The servo drive should not be tilted or upside down. Please mount the drive perpendicular to the wall or malfunction and damage will occur.
- 2. The servo drive should be mounted in the control panel with a cooling fan, to enhance air circulation and cooling.
- 3. In order to ensure the drive is well ventilated, ensure that the all ventilation holes are not obstructed and sufficient free space is given to the servo drive. To define the free space, please refer to the section "Minimum Clearances".
- 4. Please mount the servo drive in a location where the foreign matter could be prevented to be inside the drive when the drive is operating.
- 5. Make sure to tighten the screws for securing drive or motor. Failure to observe this precaution may result in damage.
- 6. As the drive conducts heat away via the mounting, the mounting plane or surface should not conduct heat into the drive from external sources.

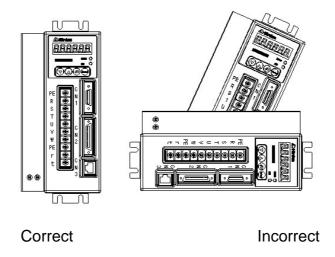


Figure 2-3 The correct direction for installation Minimum Clearances

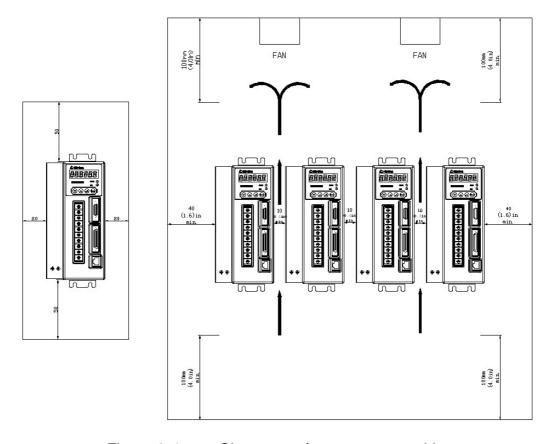


Figure 2-4 Clearances for one or more drives

To increase ventilation to avoid ambient temperatures that exceed the specification, please install a fan. A minimum spacing of two inches must be maintained above and below the drive for ventilation and heat dissipation. Additional space may be necessary for wiring and cable connections. When installing two or more drives adjacent to each other, please follow the clearances as shown in figure 2-4.

2.6 Connect ports and cable

The cable of ports should be choiced carefully. Please fallow the requirment as table 2-3 and 2-4.

Table 2-3 Appellation and intention for the ports

Terminal Indentification	Terminal Description	Notes
R、S、T	Main circuit terminal	Used to connect three-phase AC main circuit power depending on connecting servo drive model.
r, t	Control circuit terminal	Used to connect single-phase AC control circuit power depending on connecting servo drive model
U、V、W、PE	Servo motor output	Used to connect servo motor Terminal Wire color symbol U Brown V Black W Gray PE Yellow and green
PE	Ground terminal	Used to connect grounding wire of power supply or servo motor.
CN1	Encoder connector	Used to connect encoder of servo motor. Please refer to section 3.2 for details.
CN2	I/O connector	Used to connect external controllers.Please referto section 3.3 for details.
CN3	Communication connector (Option)	Used for RS-232 communication connection.

Table 2-4 Cable specifications for ports

Terminal	Terminal	Power Cable - Wire gouge	
Indentification	Description	Power Cable – Wire gauge	
R、S、T	Main circuit	1.5~2.5mm ²	
K, S, I	terminal	1.5~2.511111	
r, t	Control circuit	0.75~1 mm ²	
15. (terminal	0.75~1 mm	
U、V、W	Servo motor	1.5~2.5 mm ²	
U, V, W	output	1.5~2.5 111111	
PE	Ground terminal	1.5~2.5 mm ²	
CN1	Encoder	≥0.14 mm ² , 7 pair shielded	
CIVI	connector	twisted-pair cable	
CN2	I/O connector	≥0.14 mm ² , shielded	
CINZ	i/O connector	twisted-pair cable	

Wiring Notes:

Please obseve the following wiring notes while performing wiring and touching any electrical connections on the servo drive or servo motor.

- 1. Ensure to check if the power supply and wiring of the "power" terminals (R, S, T, r, t) is correct.
- 2. Please use shielded twisted-pair cables for wiring to pervent voltage coupling and eliminate electrical noise and interference.
- 3. Ensure to check if the U, V, W terminal is correct, or the motor maybe not turn or cause galloping.
- 4. The ground terminal of the servo drive and motor should be connect to the terminal which is well grounded into a single-point ground, and the ground wire should be rough.
- 5. As a residual hazardous voltage may remain inside the drive, please do not immediately touch any of the "power" terminals (R, S, T, r, t, U, V &W) or the cables connected to them after the power has been turned off and the charge LED is lit.
- 6. Please usd a twisted-shield signal wire with grounding conductor for the encoder calbe (CN1) and the position feedback signal connector (CN2). The wire length should be 20m or less. If the length is greater than 20m, the wire gauge should be doubled in order to lessen any signal attenuation.

- 7. The shield of shielded twisted-pair cables should be connected to the SHIELD end (ground terminal) of the servo drive.
- 8. The cable connected to R, S, T and U, V, W terminals should be placed in separate conduits from the encorder or other signal cables. Separate them by at least 30cm.
- 9. Ensure to check if the direction of the diode for the relay is correct, or damage will occur as a result.
- 10. Please install a NFB to prevent excessive current which may arise due to short-circuit or flow when power on an power off, so as to avoid the damage on the servo drive.
 - 11. Please turn off the power supply, if the drive will not be used for a long time.
- 12. The direction definition of rotation: facing the motor shaft, the counter-clockwise direction is defined as the CCW. And the clockwise direction of rotation is defined as the CW. The CCW is the positive direction, and CW as negative direction.

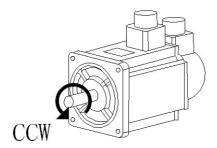


Figure 2-5 The definition of the direction for the rotation

Chpater 3 ports and connect

The singal connect ports include CN1, CN2, CN3, and CN3 is reserved. This chapter gives the definition of CN1, CN2, and show 3 standard connection.

3.1 Summary

- 1. CN1 is encoder cable connector, used for receiving encoder singals of motor.
- 2. H3N series drivers just match incremental photo-electricity encoder.
- 3. incremental photo-electricity encoder include 6 singals: U V W A B Z. It takes differential singal output, and include 15 wire output.
- 4. CN2 port is control singal port, used to receive control singal from the controller, and also output the feedback singals which are necessary for the controllor.
- 5. control singals of the controller always include pulse singals as PULS+, PULS-, and direction singals as SIGN+, SIGN-, analog voltage singals for speed control as AS+, AS-, enable singal AS SON, and so on.
- 6. The feedbake singal for controller always include encoder singals as A+, A-, B+, B-, Z+, Z-, Z singal OC output CZ, driver alarm singal ALM+, ALM-, and so on.

3.2 Encoder Connector CN1

3.2.1 The Layout and View of CN1

CN1 is is motor encoder singal port, which terminal is named as DB26M. The view and the layout of the CN1 is shown as the following:

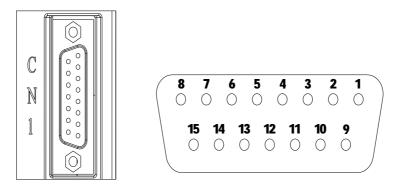


Figure 3-1 The view and layout of the CN1 encoder signal interface terminal

3.2.2 Signal definition for CN1

Table 3-1 Terminal signal definition for CN1

PIN No.	Terminal Identification	Description
1	A+	Connected to A+ signal
9	A-	Connected to A- signal
2	B+	Connected to B+ signal
10	B-	Connected to B+ signal
3	Z+	Connected to Z+ signal
11	Z-	Connected to Z+ signal
14	U+	Connected to U+ signal
6	U-	Connected to U- signal
13	V+	Connected to V+ signal
5	V-	Connected to V- signal
4	W+	Connected to W+ signal
12	W-	Connected to W- signal
7	+5V	Power supply 5V
8	GND	Gnd for power supply
15	PE	Shielding

3.3 The Layout and View of CN2

CN2 is is the control signal I/O interface, which terminal is named as DB26M. The view and the layout of the CN2 is shown as the following:

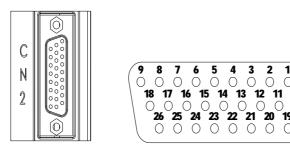


Figure 3-2 The view and layout of the CN2 I/O interface terminal

3.4 Signals Explanation of Connector CN2

Table 3-2 CN2 Terminal Signal definition

PIN	Terminal	Description
No.	Identification	
19	OA+	
10	OA-	Encoder signal output A, B, Z (Line-driver output). The
11	OB+	motor encoder signals are available through these
1	OB-	terminals.
2	OZ+	
12	OZ-	
4	CZ	Encoder signal Z open-collector output.
6	DGND	Ground for encoder signal.
16	COM+	COM+ is the common voltage rail of the DI and DO signals. The range is DC12~24V and the available current should be greater than 100mA
14	SON	Servo enable signal input terminal. SON ON: enable the drive. SON OFF: drive off and the motor is in a free state. Note 1: The motor must be still before enable the drive. Note 2: Any other command should be inputted after the son on signal at least 50ms.
17	ZCLAMP/ CLE/SC1	In the speed control model when PA22=1 the input interminal is defined as the zero speed clamping function. When PA4=0 the terminal is defined as deviation counter reset function The input interminal is defined as the speed conmand selection SC1 in the speed control model (PA4=1) when the parameter PA22=0
8	SC2	The input interminal is defined as the speed conmand selection in the speed control model when PA4=1 and PA22=0. Used to select the different internal speed through the combination of SC1 and SC2. SC1 OFF, SC2 OFF: internal speed 1. SC1 ON, SC2 OFF: internal speed 2. SC1 OFF, SC2 ON: internal speed 3. SC1 ON, SC2 ON: internal speed 4.

7	ALRS	Clear alarm signal input Pin	
23	DOCOM	Common ground for I/O signal	
21	ALM	Servo Alarm signal output Pin.	
22	BRK	BRK is activated actuation of motor brake	
		In the position control mode (PA4=0),	
		COIN is activated when the position error is equel and	
		below the setting value of PA16.	
20	COIN	In the speed control mode (PA=1),	
		COIN will be activated when the drive has detected the	
		motor has reached the Targe Rotation Speed setting as	
		defined in parameter PA28.	
13	AS+	Motor speed command:	
		-10V~+10V, corresponds to	
3	AS-	-3000~+3000 r/min command	
		and the input impedance is $10k\Omega$	
5,15	AGND	The reference ground for analog input signals.	
26	PULS+	Position Bulso Input	
18	PULS-	Position Pulse Input	
24	SIGN+	Position Sign Input	
25	SIGN-	Position Sign Input	
9	PE	Shielding (connected to ground)	

3.5 I/O Interface Type

3.5.1 Digital signal input interface

Digital signal input interface circuit is generally composed by optocouplers, switches, relays open-collector transistors or other components as shown in the following figures.

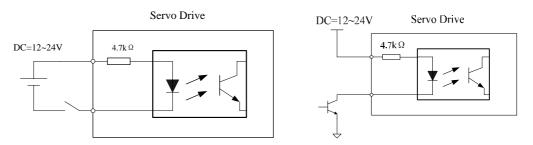


Figure 3-3 Digital signal input interface circuit type 1

- 1. The voltage of the external power is DC12~24V and available current should be 100mA at least.
 - 2. Ensure that the polarity of the power is correct, otherwise it will damage the drive.

3.5.2 Digital signal output interface

The digital signal output interface circuit composed by optocouplers should be connected to the optocoupler or relay to achieve transferring the isolated digital signal.

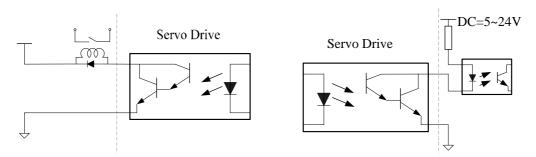


Figure 3-4 Digital signal output interface circuit type 2

- 1. The voltage of the external power is DC5~24V.
- 2. The output form of optocoupler is open-collector, the max. current is 50ma and the external max. DC voltage is 25V.
- 3. When the load is relays or other inductive load, freewheeling diode is needed to parallel at the both ends of the iinductive components. Ensure the polarity of the diode, otherwise damage maybe occur.

3.5.3 Position pulse input interface

The drive can accept two different types of pulse inputs: Line-drive input and Open-collector input. The maximum input frequency of line-drive input with strong anti-jamming capability is 500Kpps has and the one of the Open-collector input is 200Kpps. For reliable pulse signal, the Line-drive input circuit is recommended.

1. Diagram for Line-drive input circuit

In the Line-dirve mode, AM26LS31,MC3487 or RS422 is used in the Line-drive output circuit of the host controller.

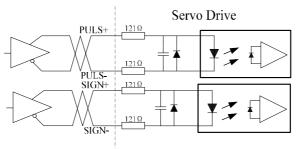


Figure 3-5 Pulse input interface circuit type 3 (Line-drive input circuit)

2. Diagram for Open-collector input circuit

The source of pulse input is from the open collector NPN equipment and use the external power supply. This input mode will reduce the operating frequency.

The driving current of the circuit is 10~15mA, please determine the desired resistance of the resistor R by the DC power supply voltage.

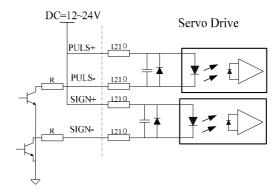


Figure 3-6 Pulse input interface circuit type 3 (Open-collector input circuit)

3.5.4 Analog signal input interface

There are two different input circuit types of analog signal: differential input mode and single-ended input mode. The differential input circuit can inhibit the common-mode interference, so the differential input mode is recommended.

Either analog speed command or torque command is needed for "H" series servo drive. The voltage range for the analog command is DC-10V~+10V, and the input impedance is $10k\Omega$. The zero drift of the analog signal could be compensated by adjusting the parameters.

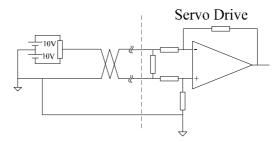


Figure 3-7 Analog signal input interface circuit type 4 (differential input mode)

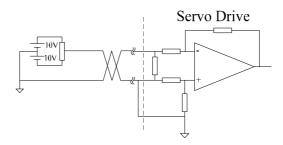


Figure 3-8 Analog signal input interface circuit type 4 (single-ended input mode)

- 1. Three connecting wires are needed in differential input mode, but only two connecting wires in single-ended input mode..
- 2. The voltage of the signal should not be beyond the specified range (-10V~+10V) or may damage the drive.
- 3. This interface is a non-isolated input interface, so the shielded cable is recommended to reduce the noise.

3.5.5 Encoder signal output interface

The drive output the motor encoder feedback position signals by Line-drive transmitter chip AM26LS31. The user could receive the encoder A phase, B phase and Z phases signals by two types: Line-drive receiver chip and the high-speed optocoupler.

The host controller receive the encoder signals by Line-drive receiver chip. The circuit connected to the drive is shown as the following.

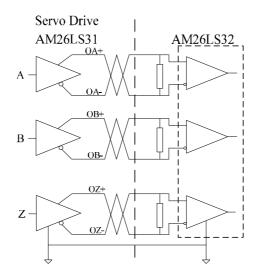


Figure 3-9 Encoder positon signals output interface circuit type 5 (Line-drive)

The value of the resistance is $220\Omega \sim 470\Omega$, and the commond ground (GND) of the encoder should connect with the signal ground of the host controller.

For the interface is a non-isolated input interface, when the host controller receives the position signals by high-speed optocoupler, the current-limiting resistance whose value is 220Ω should be in series to the receiving circuit. And the interface circuit is shown as the following.

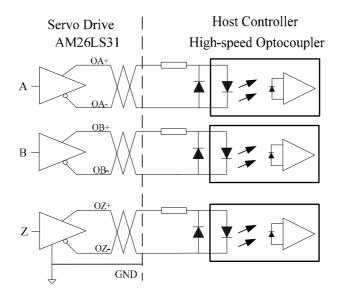


Figure 3-10 Encoder positon signals output interface circuit type 5 (optocoupler)

3.5.6 Encoder Open-collector Z-pulse output interface

The width of the zero position pulse is narrow, therefore the high-speed optocoupler is recommended as the receiver. This interface is a non-isolated input interface, the maximum current is 50mA and the maximum voltage is 30V. The specific interface circuit is shown as the following.

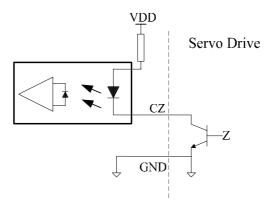
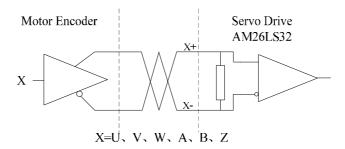
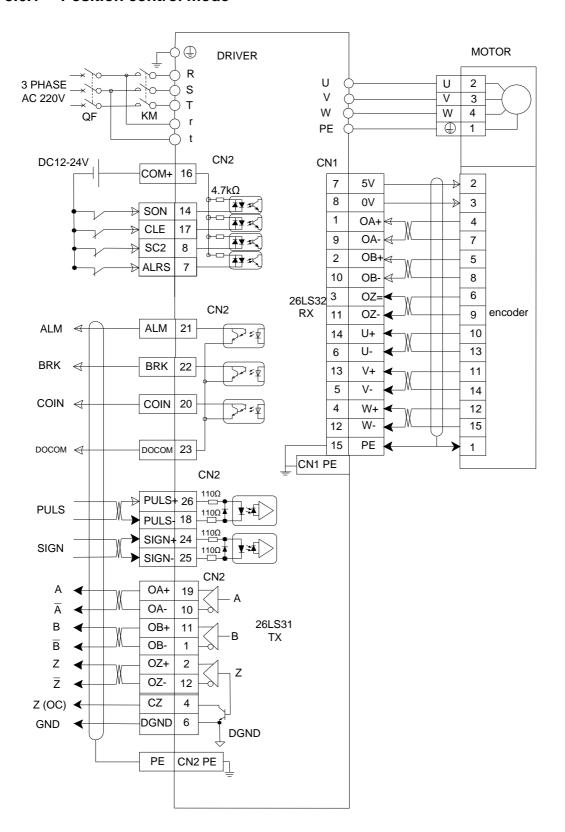
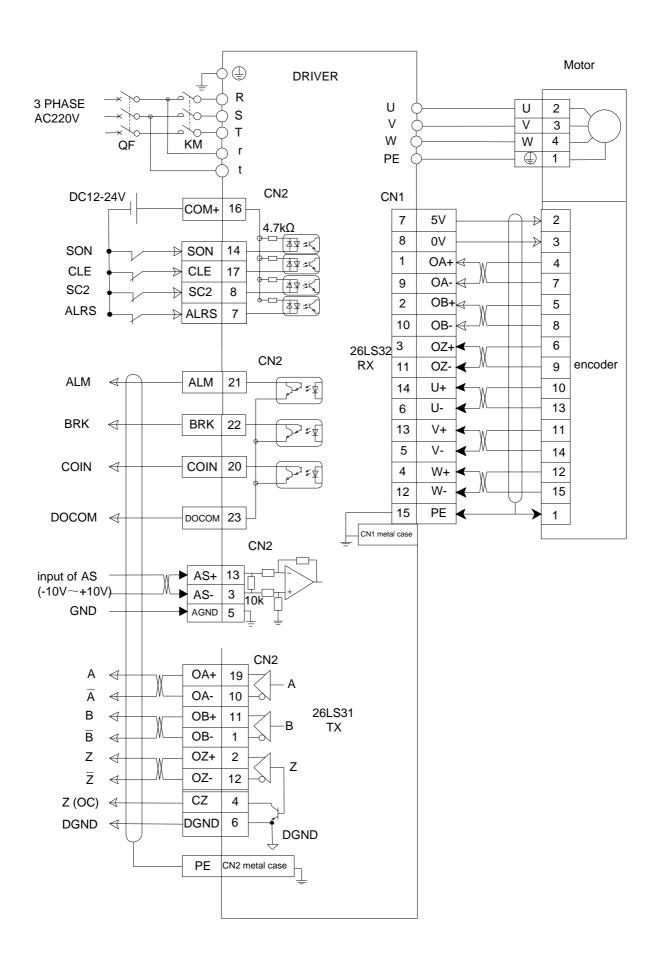


Figure 3-11 Encoder Open-collector Z-pulse output interface circuit type 6

3.5.7 Encoder feedback signal input interface

The servo drive receive the encoder feedback signal by the Line-drive receiver IC such as AM26LS32, and the circuit is shown as the following.


Figure 3-12 Encoder feedback signal input interface circuit type 7

3.6 Standard Connection Example

3.6.1 Position control mode

3.6.2 Speed / Torque control mode

Chapter 4 Display and Operation

This chapter describes the basic operation of the digital keypad and the features it offers.

4.1 Description of the digital keypad

The digital keypad includes 4 function keys and the display panel which is composed of 6 LED. The Figure 4-1 shows all of the features of the digital keypad and an overview of their functions.

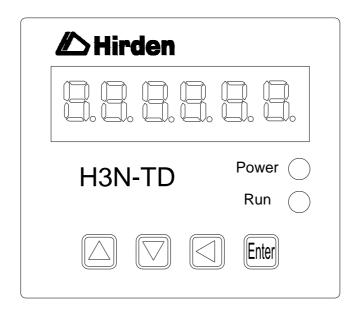


Figure 4-1 Overview about the keypad

Table 4-1 Function instructions for the digital keypad

Symbol	Name	Function	
Power	Power supply	The LED light to indicate the control power is applied.	
Run	Running status	The LED lights to indicate the main power is applied to the circuit and the drive is enabled.	
	Up key	Pressing the Up and Down key can scroll through	
•	Down key	and change monitor codes, parameter groups and various parameter settings.	
•	Return key	Pressing the Return key can exit the menu or cancel the operation or the settings.	
Enter	Set	Pressing the Set key can enter the menu or determine and save the operation or the parameter settings.	

Note: If some fault occurs, the 6 bit LED display will be blinking.

4.2 Main menu

As the first layer of the operational processes, the main menu consists of six parts. You can use the Up and Down key to change the content of the main menu display and press the Set key to enter the second layer, as well you could press the Return key to quit the second layer to the main menu.

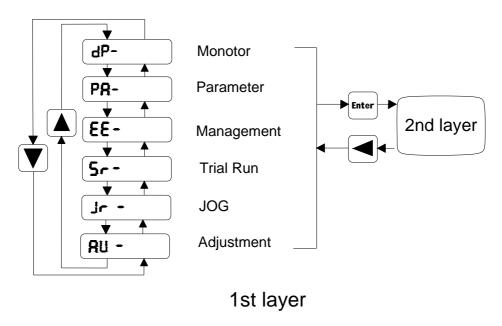


Figure 4-2 Flowchart for the main menu of the operational processes

4.3 Monitor Display (DP--)

Uers could press the Up and the down key to find the monitor display of the main menu. When "dp-" is displayed, please press the Set key to enter the layer for monitor mode. There are 19 kinds status for the monitor display shown as the following. You could select the display you need using the Up and Down key and then press the Set key to enter the specific monitor and display interface.

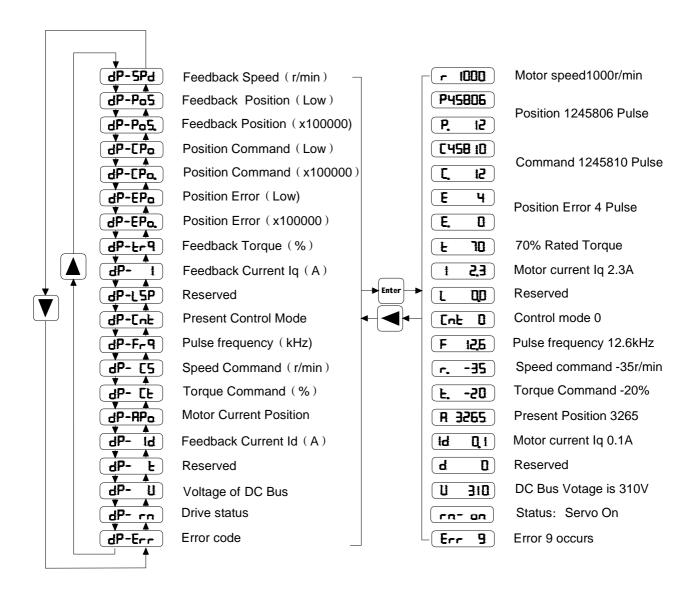


Figure 4-3 Diagram for the operational processes of the monitor display

4.4 Parameter setting (PA--)

You could find the "PA-" on the main menu by using the Up and Down key, and then enter the parameter selection interface by pressing the Set key. By using the Up and Down key you could select the parameter which you want to change, and then press the Set key to enter the parameter modification interface. You could use the Up and Down key to change parameter to the value you required. When the parameters is modified, the point of the last LED digital tube will be light, that means the parameter is changed but not ye be effective. You could press the Set key to make it, then the point will go out. You could use the Return key to quit.

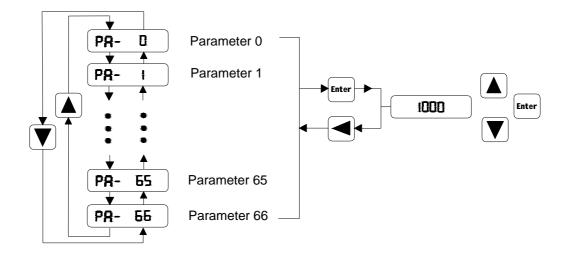


Figure 4-4 Diagram for the operational processes of parameter setting

4.5 Parameter Management (EE--)

You could find the "EE-" on the main menu by using the Up and Down key, and then enter the parameter management interface by pressing the Set key. The representative meaning of each symbol is shown in the figure 4.5. By using the Up and Down key you could select the operation which you need. And then press and hold the Set key for 3 seconds, when "FINISH" is displayed on the LED means the operation is completed. But if "Error" is displayed, the operation fails, and then please press the Return key to quit.

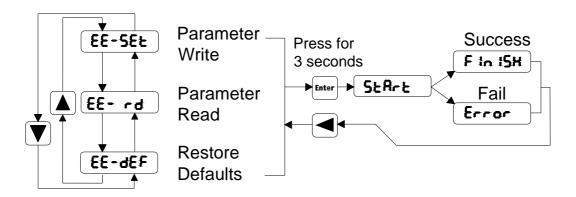


Figure 4-5 Diagram for the operational processes of parameter management

- EE-set Write operation: the parameters will be writen in the parameters district of the EEPROM. Even if the power is down the parameter will not be lost.
- EE-rd Read operation: read the data from the parameter district of the EEPROM to the parameter list of the software. If the parameter are modified to result in an error by improper operation, you could use this feature to restore the parameters.

- EE-rs Restore the parameter: read the data svaed in the backup area of the EEPROM into the parameter list of the software. If you want the backup parameter be long-term effective, you need to perform a write operation.
- EE-def Restore the default parameters: read all of the defaults into the parameter list, and then write the parameters into the EEPROM.
 Even if the drive is restart, the defaults is still effective. After this operation, you should ensure that the motor code (PA1) is adapted for the using motor.

4.6 Speed trial run without load (Sr--)

You can enable the "Sr" operation mode by set parameter PA4=3. You could find the "Sr-" on the main menu by using the Up and Down key, and then enter the speed trial run operation interface by pressing the Set key. When "Sr 0.0" is displayed and the units is r/min, you could change the speed command by pressing Up or Down key.

Figure 4-6 Diagram for the speed command entering of speed trial run

4.7 JOG trial run without load (Jr--)

You can enable the "Sr" operation mode by set parameter PA4=4 and change the JOG speed command by seting parameter PA 21. You could find the "Jr-" on the main menu by using the Up and Down key, and then enter the JOG trial run operation interface by pressing the Set key. When "J 0.0" is displayed and the units is r/min, you could press Up or Down key to jog the motor CCW or CW direction. The motor will only rotate while the arrow key is activated.

Figure 4.7 Diagram for the JOG trial run

4.8 Zero-offset adjustment

By the operation the drive could automatically detects the zero bias of the analog speed or torque command, and write the value in the parameter PA45 or PA39. At last the drive will save the parameter in the EEPROM automatically. You could find the "AU-" on the main menu by using the Up and Down key, and then enter the operation interface for Zero-offset adjustment by pressing the Set key. The AU-SPD correspond to the speed zero-offset adjustment and the AU-trq correspond to torque zero-offset adjustment. You could select the process by Up or Down key, and then you should press and hold the Set key for 3 seconds till the LED displays "FINISH".

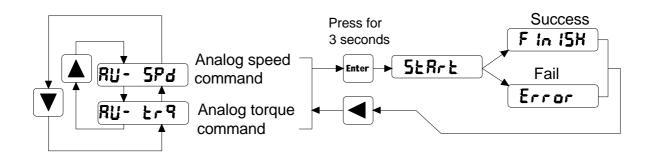


Figure 4.8 Diagram for the operational processes of analog zero-offset adjustment

Chapter 5 Trial Run and Tuning Procedure

This chapter describes trial run for servo drive and motor, including the trial run without load and introductions about the operation mode of the drive. Ensure to complete the trial run without load first before performing the trial run with load.

5.1 Inspection without load

In order to prevent accidents and avoid damaging the servo drive and mechanical system, the trial run should be performed without load. Please disconnect all couplings and belts and do not run servo motor while it is connected to load or mechanical system, for the unassembled parts on motor shaft may easily disassemble during running and it may damage mechanical sysytem or even result in personnel injury.

Please perform trial run without load first and then perform trial run with load connected.

Before the servo is powered, please observe the following cautions:

- 1. Ensure whether there is obvious damage on the appearance of the drive and motor.
- 2. Check whether all of the wiring is correct or not, especially for the R, S, T, U, V, W and PE terminal. The terminals should be connected to the specified calbe and terminal.
- 3. Ensure that there is no foreign matter inside the drive, such as conductive objects and flammable objects.
- 4. Confirm that the electromagnetic brake could work normally, if the brake is being used.
 - 5. Ensure that the specification for the power is applicable.
- 6. Make sure that the cable and the mechanical parts are not intertwined, to avoid wear or pulling phenomenon at the run time.
 - 7. Verify that the servo drive and motor are connected to the ground reliably.
 - 8. Make sure control switch is OFF.

After the control power is applied, please observe the following cautions:

- 1. Ensure that the power indicator and LED display is normal. If there is any abnormal condition of the power indicator and LED display, please contact your distributor for assistance or contact with us.
- 2. Check that all user-defined parameters are set correctly. For the characteristics of different machinery equipment are not the same, in order to avoid accident or cause damage, do not adjust the parameter abnormally and ensure the parameter setting is not an excessive value.
 - 3. Make sure that the servo drive is off when you reset some parameters.
- 4. Check for abnormal vibrations and sounds during operation. If the servo motor is vibrating or there are unusual nosies while the motor is running, please contact the dealer or manufacturer for assistance.
- 5. If there is no contact sound or there be any unusual noises when the relay inside the servo drive is operating, please contact your distributor for assistance or contact with us.

5.1.1 Appling power to the drive

Please check the wiring first. If there is no abnormal condition, you could turn on the control power supply (the main power should be OFF). If any error except error 3 is displayed on the LED, please check the wiring and the parameter, or you could refer to the chapter 7.

Secondly please turen on the main power supply, and the running indicator will be lit. If the indicator has not been lighted or any other error occurs, please check the main power supply and the parameter PA53. And at last you could refer to chapter 7.

5.1.2 JOG trial run without load

It is very convenient to use JOG trial run without load to test the servo drive and motor as it can save the wiring. For safety, it is recommended to set JOG speed at low speed such as 100r/min. The JOG speed could be set in the parameter PA21.

1. Parameters

Table 5-1 Parameters about the JOG trial run

Parameter NO.	Name	Default	Setting	Description	
PA04	Control Mode	0	4	Select the operation mode as JOG trial running mode.	
PA20	Inhibit Drive Function	1	1	Ignore the drive prohibition	
PA21	JOG speed	120	100	Speed command for JOG	
PA40	Acceleration Time	0	Opportune	Reduce the acceleration shocks.	
PA41	Deceleration Time	0	Opportune	Reduce the deceleration shocks.	
PA53	Enabled Word 1	1	1	Enable the drive without the external signal	

2. Operation

- Step 1: Enable the drive and the running indicator will be lit by setting the parameter PA53=0001. And then the servo drive and motor is at zero speed running state.
- Step 2: Set parameter PA21 as JOG speed. After the desired JOG speed is set, and then press the Set key, the speed will be write into the control software.
- Step 3: Enter the JOG operation interface by using the digital keypad, and the digital LED display should be displayed as the following:

J 0.0 (r/min)

- Step 4: Pressing the Up key and the servo motor will run in CCW direction. After releasing Up key, the motor will stop running.
- Step 5: Pressing Down key and the servo motor will run in CCW direction. After releasing Down key, the motor will stop running.
 - Step 6: When preesing Return key, the drive could exit JOG operation mode.

CCW and CW definition.

CCW(counterclockwis): when facing the servo motor shaft, CCW is running in the counterclockwise direction.

CW(clockwis): when facing the servo motor shaft, CW is running in clockwise direction.

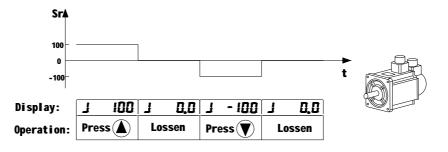


Figure 5-1 Diagram for the JOG trial run without load

5.1.3 Speed trial run without load

Before speed trial run, fix and secure the motor as possible to avoid the danger from the reacting force when motor speed changes.

1. Parameters

Table 5-2 Parameters about the speed trial run

Parameter NO.	Name	Default	Setting	Description
PA04	Control mode	0	3	Select the operation mode as speed trial running control mode.
PA20	Inhibit Drive Function	1	1	Ignore the drive prohibition
PA53	Control word 1	1	1	Enable the drive without the external signal

2. Operation

Step 1: Enable the drive and the running indicator will be lit by setting the parameter PA53=0001. And then the servo drive and motor is at zero speed running state.

Step 2: Set parameter PA04 =3, choosing the speed trial running mode as the current mode.

Step 3: The speed command of the speed trial running is input by pressing Up and Down keys and the minimum given value is 0.1r/min. Use the Up or Down key to select the "Sr" mode on the main menu, and the press the Set key to enter the operation interface for the speed trial running. And the LED display should be shown as the following:

Positive instruction means that the servo motor runs in the CCW direction, and the negative instruction means that the motor runs in the CW direction.

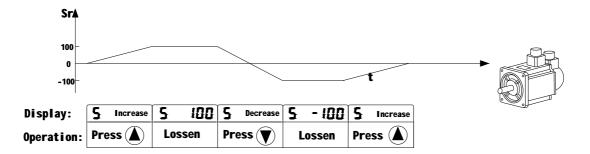


Figure 5-2 Diagram for speed trial run

5.2 Position control mode

The position control mode is usually used for the applications requiring precision positioning, such as industry positioning machine, indexing talbe etc. Before position trial run, please observe the following cautions:

- 1. Ensure that all wiring is correct and wiring terminals of the servo drive and motor are correctly insulated, or damage and malfunction may result.
- 2. Check whether the motor and the drive is fixed and secure, or the motor or drive may be damaged by the reacting force when motor speed changes.

5.2.1 Simple position control system

A simple position control sysytem only needs two sets of position pulse command signals, drive enable sigal, prohibited drive signal, servo ready and servo alarm output signals. The wiring diagram of the simple system is shown as below.

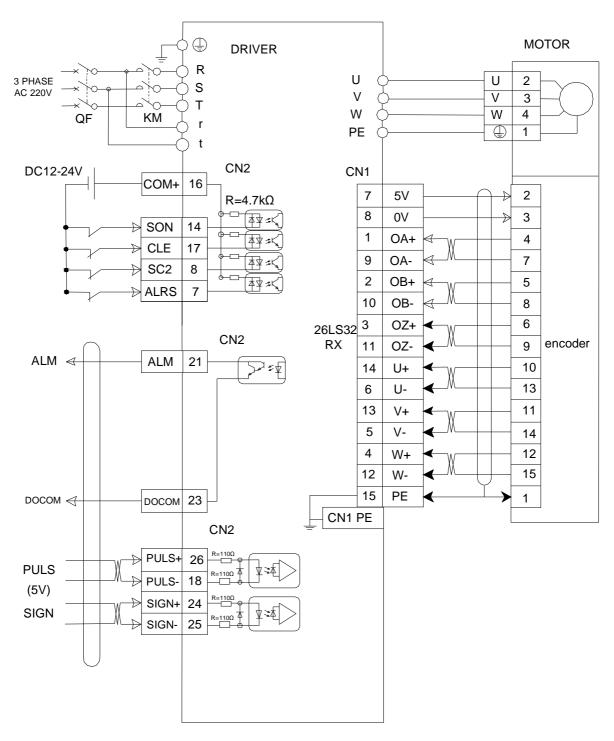


Figure 5-3 wiring diagram for the simple position control system

Note: Refer to the section 3.6.1, you could find the detailed wiring diagram for the position control system.

5.2.2 Parameters for the position control

Table 5-3 Parameters about the position control mode

				1
Parameter NO.	Name	Value range	default	units
PA04	Control mode	0	0	
PA09	Proportional Position Loop Gain	1~1000	100	Hz
PA10	Position Feed Forward Gain	0~100	0	%
PA11	Smooth Constant of PA10	0~1000	0	ms
PA12	Electronic Gear Ratio (Numerator) N1	1~30000	1	
PA13	Electronic Gear Ratio (Denominator) M1	1~30000	1	
PA14	External Pulse Input Type	0~2	0	
PA15	Direction of External Pulse	0~1	0	
PA16	Positioning Completed Width	0~30000	20	
PA17	Excessive Position Error Range	0~30000	400	100 pulse
PA18	Excessive Position Error Function Selection	0~1	0	
PA19	Smooth Constant of Position Command	0~30000	0	0.1mS
PA20	Inhibit Drive Function Selection	0~1	0	
PA53	Digital Input Terminals Function Selection / Enabled Word 1	0~1	1	

1. External pulse input type

Table 5-4 Type and waveform of the external input pulse

Pulse Type	Forward	Reverse	PA14
Pulse + Direction	PULS SIGN		0
CCW + CW	PULS _ T _ T _ T _ T _ T _ T _ T _ T _ T _		1
AB Phase Pulse	PULS SIGN		2

Host controller could drive the servo drive and motor running and positioning by external pulse. Referring to parameter PA14, you could see there are three types of the pulse. In the table 5.5 the types of the pulse are diagramed and the pulse edge indicated by arrows could be counted by drive in each pulse type.

You could change the direction of the pulse count by setting parameter PA15.

The pins 26 (PULSE+), 18 (PULSE-), 24(SIGN+), 25 (SIGN-) of the terminal interface CN2 are set for external pulses input. For the details of the interface CN2, please refer to the section 3.43.

2. Filter for positon control

The filter is for the position smoothing of motion command. Using filter not only can improve the performance when servo motor accelerate or decelerate but also can make motor to operate more smoothly. When the load is change, the motor usually run not smoothly when starts to run and stop due to the friction and inertia change. At this moment, users can increase the value of the PA19 to improve the performance. But if the vaule is too large, the command delay phenomenon would be more obvious. When the parameter PA19=0, the filter is disable. The value of the PA19 is the time that the frequency of the position command increasee from 0% to 63% of the external pulse frequency. Diagram of the filter is shown as below.(The non-filtering and the filtering waveform are contrasted.)

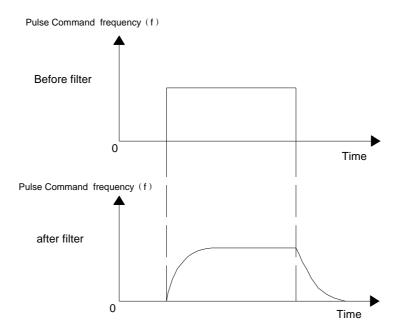


Figure 5-4 Diagram for comparison between the filtering and non-filtering waveform

5.2.3 Electronic gear ratio

Mechanical transmission ratio and the pulses per circle of the servo motor encoder couldn't be identified by the host controller. But the unit pulse generated by host controller could be corresponded to the actual moving distance by setting the electronic gear ratio.

Electronic gear ratio of the servo system could be calculated as the following.

N1: Numerator of the electronic gear ratio (PA12)

M1: Denominator of the electronic gear ratio (PA13)

P1: Number of pulses corresponding to 1mm in the host controller

F2: Number of encoder pulses per circle

S1: Screw pitch of the mechanical transmission (mm)

F1: Number of pulses required by actual moving distance 1mm.

F1=N1*P1/M1 (pulses / mm)

F1=F2/S1 (pulses / mm) for actual moving distance without gearbox

Therefore the electronic gear ratio N1/M1 is equal to F2/(S1*P1).

For example, if P1 of the host is 1000 pulses/mm, F2 of the H series servo drive is 10000, S1 of the screw is 6mm, the electronic gear ratio N1/M1=10000/(1000*6)=5/3. So you could set the parameter PA12 (N1)=5 and the PA13 (M1)=3.

If there is a gearbox between screw and motor, the ratio of the gearbox is N2/M2;

N2: rotation number of the motor

M2: rotation number of the screw

F1=N1*P1/M1 (pulses / mm) for host controller

F1=F2*N2/(S1*M2) (pulses / mm) for actual moving distance with gearbox

Therefore the electronic gear ratio N1/M1 is equal to F2*N2/(S1*P1*M2).

For the above-mentioned example, if the ratio of the gearbox is N2/M2=5/3. According to the formula, the electronic gear ratio $N1/M1=10000^*5/(1000^*6^*3)=25/9$. So you should set the parameter PA12 (N1)=5 and the PA13 (M1)=3 for the mechanical transmission system with a gearbox.

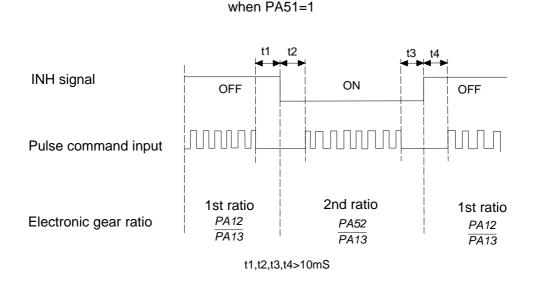


Figure 5-5 Diagram for dynamic electronic gear ratio

Note: H3N series servo drive provides two sets of dynamic electronic gear ratio, which could be swithced online. The second numerator of the electronic gear ratio is set in the parameter PA 52, and denominator is the same as the one of the first one. When the PA51 is equal to 1, the function of the dynamic electronic gear is enabled and signal connected to pin-15 of the I/O interface CN2 could control the switching of the electronic gear. When the level of the signal is low, the servo drive would choose the second electronic gear ratio PA52/PA13.

5.2.4 Position proportional gain

The positional control loop includes the speed control loop, therefore you should complete the speed control setting first by using manual mode before performing position control (setting position control block diagram). Then adjust the proportional position loop gain PA09 and position feed forward gain PA10.

Table 5-5 The parameters about the position proportional gain

Parameter NO.	Name	Description	Value range	Defaults
PA-09	Position loop proportional gain	Increasing the value can improve the response frequency of the position	0~1000	50
PA-10	Position feed forward gain	Increasing the value can reduce the position track error	0~100	0
PA-11	Smooth constant of PA10	Be smoother to decrease the position overshoot	0~1000	0

For the positional control loop includes the speed control loop, the position loop bandwidth would be restricted by the one of the speed loop. It is recommended that the speed loop responsiveness should be at least four times faster than the position loop responsiveness. This means that the setting value of the proportional speed loop gain PA05 should be at least four times faster than proportional position loop gain PA09.

The equation is shown as following:

 $Fp \le fv/4$

Fv: speed loop responsiveness (Hz),

Fp: position loop responsiveness (Hz)

 $PA09=2*\pi*fp$

For example, the desired position loop responsiveness is equal to 40 Hz.

Then PA09= $2^*\pi^*40=251$ rad/s

Position Control Block

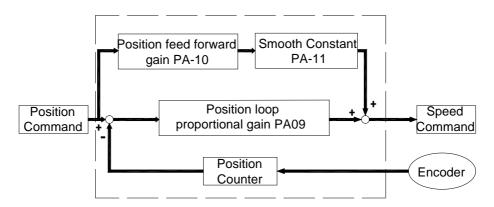


Figure 5-6 Flowchart of the position control loop

Increasing the position proportional gain can improve the stiffness of the system, expedite position loop response and reduce position error. However, if the setting value is over high, it may generate vibration or noise.

When the value of proportional position loop gain is too great, the position loop responsiveness will be increased and it will result in small phase margin. If this happens, the rotor of motor will oscillate. At this time, you have to decrease the value of the PA09 until the rotor stop oscillating. When there is an external torque command interrupted, over low PA09 value will let the motor cannot overcome the external strength and fail to meet the requirement of reasonable position track error demand. Adjust feed forward gain PA10 to efficiently reduce the dynamic position track error.

5.3 Gain Adjustment

The position and speed frequency response selection is depending on and determined by the control stiffness of machinery and conditions of applications. Generally, high reponsiveness is essential for the high frequency positioning control of mechanical facilities and the applications of high precision process sysytem. However, the higher frequency response may easily result in the resonance of machinery system. Therefore, for the applications of high frequency response, the machinery system with control stiffness is needed to void the resonance. Especially when adjusting the frequency response of unfamiliar machinery system, you could gradually increase the gain setting value to improve frequency response untill the resonance occurs, and then decrease the gain setting value.

There are three control loop in the servo drive system, including the outermost position control loop, the intermediate speed control loop and the innermost current control loop. The flowchart for the servo system is shown as below.

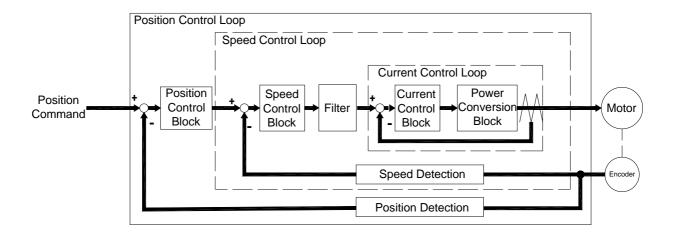


Figure 5-7 Diagram for the servo closed-loop control sysytem

The responsiveness of the inner control loop should be greater than the outer control loop, otherwise the control system will be unstable, generating vibration or noise.

Therfoer the value of the gain for the three control loop should be set correctly. Generally, the value of the current control loop gain should be the maximun and the one of the position control loop is the minimum.

The responsiveness of the current control loop which couldn't be change by the customers is set automatically within the system. And then the users should set the values of the speed and position control loop gain properly, avoiding that the inside and outside responsiveness are not matched.

5.3.1 Steps for gain adjustment

In order to obtain a stable system, please do not make major alteration at only one parameter related to the control loop.when one parameter is modified, some other relevant parameters should also be adjusted further to achieve the best results.

Therefore to modify the parameters related to the congtrol loop, we follow the following steps.

Table 5-6 The basic rule for modifing the closed-loop parameters

	Reduce vibration or overshoot	Increase responsiveness			
Cton 4	Decrease the proportional position	Increase the proportional speed			
Step 1	control loop gain PA9	control loop gain PA9			
04	Increase the integral time of the	Decrease the integral time of the			
Step 2	speed control loop PA6	speed control loop PA6			
Stop 2	Decrease the proportional speed	Increase the proportional position			
Step 3	control loop gain PA5	control loop gain PA9			

5.3.2 Adjustment for speed control loop

If the inertia of the machinery and conditions of applications is larger, you could adjust the relative parameters as the following step.

- Step 1: Increase the integral time of the speed control loop PA6
- Step 2: Gradually increase the value of the proportional speed control loop gain PA5 setting untill the resonance occurs, and then decrease the gain setting value.
- Step 3:Gradually decrease the integral time of the speed control loop PA6 untill the resonance occurs, and then increase the setting value.
- Step 4: If the resonance occurs, as a result the ideal responsiveness of the system could not be achieved. For this case, you could adjust the value of the low-pass filter for torque PA7 to suppression the resonance. And then you could repeat the above steps, in order to achieve a better responsiveness for the position and speed control loop.

5.3.3 Adjustment for position control loop

If the inertia of the machinery and conditions of applications is larger or the resonance occurs, you could adjust the relative parameters as the following step.

- Step 1: Increase the integral time of the speed control loop PA6
- Step 2: Gradually increase the value of the proportional speed control loop gain PA5 setting untill the resonance occurs, and then decrease the gain setting value.
- Step 3:Gradually decrease the integral time of the speed control loop PA6 untill the resonance occurs, and then increase the setting value.
- Step 4: Gradually increase the value of the proportional position control loop gain PA9 setting until the resonance occurs, and then decrease the gain setting value.
- Step 5. For achiving better track error of the position control loop, users could adjust position feed forward gain PA10 and PA11 (the smooth constant of feed forward gain) appropriately.

Step 6: If the resonance occurs, as a result the ideal responsiveness of the system could not be achieved. For this case, you could adjust the value of the low-pass filter for torque PA7 to suppression the resonance. And then you could repeat the above steps, in order to achieve a better responsiveness for the position and speed control loop.

5.4 Electromagnetic Brake

When the servo drive is operating, if the digital output BRK is set to off, it indicates that the electromagnetic brake is disabled and motor is stop running and locked. If the digital output BRK is set to ON, it indicates electromagnetic brake is enabled and motor can run freely. The electromagnetic brake is usually used in perpendicular axis (Z-axis) direction to reduce the large energy generated from servo motor. Using electromagnetic brake can avoid the load may slip since there is no motor holding torque when power is off. Without using electromagnetic brake may reduce the life of servo motor.

To avoid malfunction, the electromagnetic brake should be activated after servo system is off.

5.4.1 Parameters about electromagnetic brake

The on delay time of the electromagnetic brake is set within the servo drive, except this there are three parameters about the off delay time (speed) of the electromagnetic brake. The users can use these three parameters to set the off delay time of electromagnetic brake.

Table 5-7 Parameters about the electromagnetic brake

Parameter NO.	Name	Value range	Defaults	Units
PA47	On delay time of electromagnetic brake when motor is still	0~200	0	10ms
PA48	Off delay time of electromagnetic brake when motor is running	0~200	50	10ms
PA49	Off speed of the motor for electromagnetic brake when the motor is running.	0~3000	100	r/min

5.4.2 Matters for electromagnetic brake

Wiring of the electromagnetic brake is shown as below:

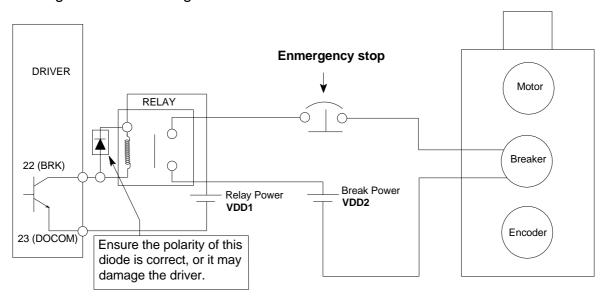


Figure 5-8 Diagram for electromagnetic brake

The BRK signal is used to control the brake operation. The VDD DC24V power supply supplied externally should be used to power the relay coil. When BRK is on, the motor brake will be activated. The coil of the brake has no polarity. But the diode has polarit, please ensure the polarity of the diode is corret or it may damage the drive.

VDD1 is DC24V.

VDD2 is DC24V or DC100V, it is usually DC24V.

VDD1 and VDD2 are two independent power, do not use one power for them.

Timing chart for using servo motor with electromagnetic brake:

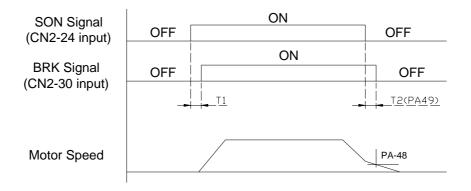


Figure 5-9 Timing chart for electromagnetic brake

BRK output timing explanation:

1. when servo off (when DI SON is not activated), the BRK output goes off (electromagnetic brake is locked) after the delay time set by PA48 is reached and the

motor speed is still higher than the setting value of PA49.

2. when servo off (when DI SON is not activated), the BRK output goes off (electromagnetic brake is locked) if the delay time set by PA48 is not reached but the motor speed is still lower than the setting value of PA49.

5.5 Timing

5.5.1 Timing for power on

Step 1. Control power supply should be turned on earlier than the main power, or turned on simultaneously.

Step 2. Delay 1.2s after the main power turn on, the servo ready (SRDY) will be ON. And then the servo drive could receive the enable signal (SON) from the host controller. When the servo drive is enabled, the main circuit will work and the motor will run. If the drvie couldn't receive the SON signal or detect some error, the main circuit will be disabled and the motor will be at zero-speed status.

Step 3. As the cautions, please do not restart frequently.

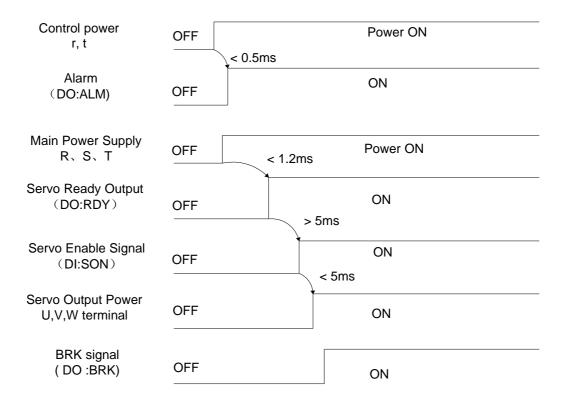


Figure 5-10 Timing flowchart about drive power on

Note: Even if the host controller output the SON signal before the SRDY signal of the drive, the servo drive couldn't receive the SON untill the SRDY signal is ON for 5 msec.

5.5.2 Timing for enable operation

1. Enable operation timing for still motor

When the motor is still, if the SON is OFF, the mian circuit will work and the work will not be powered off for some time to hold the position until the electromagnetic brake is disabled for some time set by PA47.

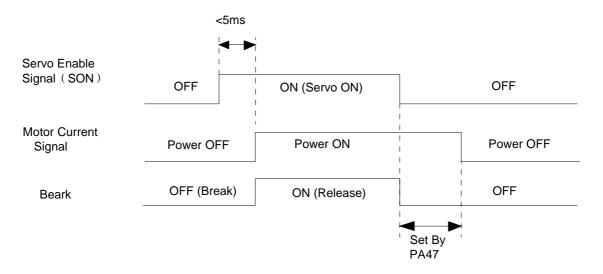


Figure 5-11 Enable operation timing flowchart when motor is still

2. Enable operation timing when the motor is running

When the motor is running, if the SON turn off, the main circuit of the drive will be disabled and the motor will be powered off. The electromagnetic brake will still be ON for some delay time set by PA48 or PA49, while the motor could be slow down, avoiding to damage the brake at the high speed. The delay time would be selected the one which is samer between the time set by PA48 and the time motor slow down to the target speed.

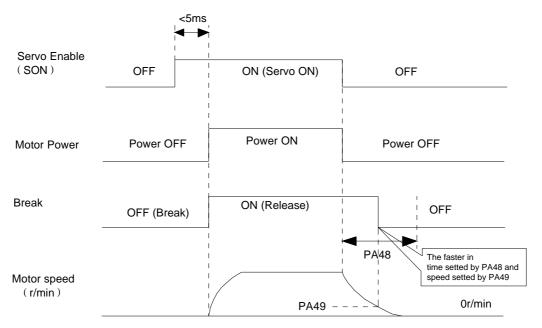


Figure 5-12 Disable operation timing flowchart when motor is running

5.5.3 Timing for alarm

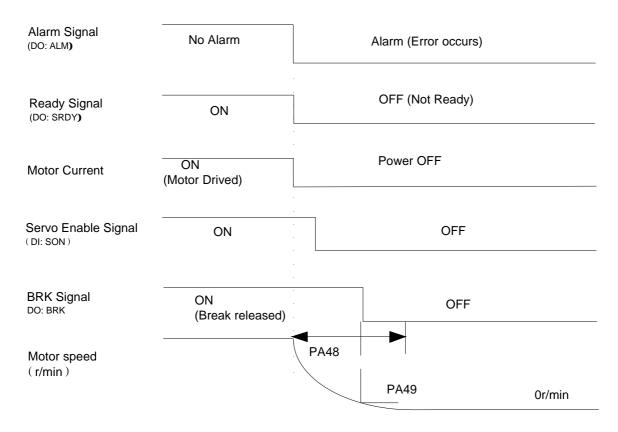


Figure 5-13 Alarm timing flowchart when motor is running or still

5.6 Start-stop characteristics

The start-stop characteristics of the servo system is determined by many aspects, such as the load inertia, the characteristics of the drive and motor, and the on-off frequency.

5.6.1 On-off frequency and load inertia

When the servo drive and motor is used in the applications which needs high on-off frequency, please confirm whether the frequency is in the permissible range of "H" series servo drive in advance. The frequency range is determined by the motor, the load inertia and the speed of the motor. To determine the frequecy range, you could refer to the following table:

Table 5-8 On-off frequency VS Load inertia

Inertia multiples	On-off frequency and ACC/DEC time		
J≤3J _{motor}	f>100 /min; less than 70mS		
J≤5J _{motor}	60 <f≤100 130ms<="" less="" min;="" th="" than=""></f≤100>		

J>5J _{motor} f≤60 /min; greater than 150mS	
---	--

Note: The above table only gives the on-off frequency in the general case, the specific circumstances will vary with the motor type and the load condition.

5.6.2 Adjustment

When the load inertia is at least five times greater than the motor inertia, some error will occur, such as position overshoot, excessive position deviation and speed response fault etc.

If the above situation occurs, you could adjust the relative parameters as the following.

- Step 1: Increase the value of PA5 and PA6
- Step 2: Decrease the value of PA9.
- Stpe 3: Increase the value of the parameter PA40, PA41 and PA42. (ACC/DEC time contant)
 - Step 4. Increase the ACC/DEC time contant of the host controller.

On the other hand, you could select a motor which has larger inertia instead of the using motor.

Chapter 6 Parameters

6.1 Parameter summary

The defaults of the following talbe is shown as an example of H3N-TD drive. the value of the parameters marked "*" may be different from other types.

In the table, applicable mode means that the parameter can play a role in a certain control mode: P refers to position control mode, S refers to speed control mode, T refers to torque control mode and ALL refers to all of the control mode.

Only when the password parameter PA0 is 315, the parameters can be changed except PA1.

Change of PA1 needs PA0 equal to 302, and you can just change PA1 at this time.

Table 6.1 Parameter List

No.	Function Description	Applicabl e	Range	Default	Unit
INO.	Function Description	Mode	Kange	Delauit	Offic
PA-0	Password	ALL	1-1000	315	
PA-1	Motor Code	ALL	10~200	53*	
PA-2	Version	ALL	0~99999	3.97.22*	
PA-3	Monitor Status	ALL	0~19	0	
PA-4	Control Mode	ALL	0~5	0	
PA-5	Proportional Speed Loop Gain	P, S	1~5000	220*	Hz
PA-6	Speed Integral Time	P, S	1~1000	30*	ms
PA-7	Low-pass Filter for Torque	ALL	0~1000	10	0.1ms
PA-8	Speed Detection Filter	ALL	1~1000	10	0.1ms
PA-9	Proportional Position Loop Gain	Р	1~1000	60	Hz
PA-10	Position Feed Forward Gain	Р	0~100	0	%
PA-11	Smooth Constant of PA10	Р	0~1000	25	ms
PA-12	Electronic Gear Ratio (Numerator) N1	Р	1~30000	1	
PA-13	Electronic Gear Ratio (Denominator) M1	Р	1~30000	1	
PA-14	External Pulse Input Type	Р	0~2	0	
PA-15	Direction of External Pulse	Р	0~1	0	
PA-16	Positioning Completed Width	Р	0~30000	20	pluse
PA-17	Excessive Position Error Range	Р	0~30000	400	×100 pluse
PA-18	Excessive Position Error	Р	0~1	0	

	Function Selection				
DA 10	Smooth Constant of Position	Р	0.20000	1	0.4 m C
PA-19	Command	Р	0~30000	I	0.1mS
PA-20	Inhibit Drive Function Selection	ALL	0~1	1	
PA-21	JOG Operation Speed	S	-3600~3600	120	r/min
PA-22	Reserved			167	
PA-23	Speed Command selection	S	0~5	0	
PA-24	1st Speed Command	S	-3600~3600	0	r/min
PA-25	2nd Speed Command	S	-3600~3600	100	r/min
PA-26	3rd Speed Command	S	-3600~3600	300	r/min
PA-27	4th Speed Command	S	-3600~3600	-100	r/min
PA-28	Target Motor Speed	S	0~3600	500	r/min
PA-29	Analog Torque Command Gain	Т	10~100	50	0.1V/100 %
PA-30	Direction of Torque Command	Т	0~1	0	
PA-31	Zero-offset Compensation for Torque Command	Т	-2000~2000	0	
PA-32	Max speed limit of Torque Command	Т	0~3600	1000	r/min
PA-33	Digital output staus	ALL			
PA-34	Digital iutput staus	ALL			
PA-35	Max speed limit of motor	ALL	0~3600	1000	
PA-36	Interal torque limit	ALL	5~600	300	%
PA-37	Negtive torque arrived set point	ALL	5~300	100	%
PA-38	Postive torque arrived set point	ALL	5~300	100	%
PA-39	Min speed limit for analog speed control mode	S	0~1000	3	
PA-40	Time of acceleration for 0 to 1000rpm	S	0~10000	100	mS
PA-41	Time of deceleration for 0 to 1000rpm	S	0~10000	100	mS
PA-42	Accel/Decel S-curve lasted time	S	0~10000	100	mS
PA-43	Analog Speed Command Gain	S	10~3000	300	(r/min)/V
PA-44	Direction of Speed Command	S	0~1	0	
PA-45	Zero-offset Compensation for Analog Speed Command	S	-2000 ~2000	0	
PA-46	Low-pass Fliter for Speed	S	0~1000	3	mS
t .		50			ı

	Command				
PA-47	On Delay Time of Electromagneti-c Brake	ALL	0~300	0	×10mS
PA-48	Off Delay Time of Electromagnetic Brake	ALL	0~300	50	×10mS
PA-49	Target Speed for Turning off Electromagneti-c Brake	ALL	0~3600	100	r/min
PA-50	Sampling Gain for Bus Voltage	ALL	10~3000	511*	
PA-51	Dynamic electronic Gear Ratio enable	ALL	0~1	0	
PA-52	Second electronic Gear Ratio (Denominator) M2	ALL	1~30000	1	
PA-53	Inside force enable	ALL	0~1	1	
PA-54	Z output pulse wide select	ALL	0~1	1	
PA-55	AB output dividing factor	ALL	0~255	1	
PA-56	Outport effect level set	ALL	000~111	100	
PA-57	DO1 redefine	ALL	1~5	1	
PA-58	DO2 redefine	ALL	1~5	3	
PA-59	DO3 redefine	ALL	1~5	4	
PA-60	Reserved	ALL		167	
PA-61	Input filter time	ALL	0~1000ms	2	
PA-62	Inport effect level set	ALL	0000 ~1111	0000	
PA-63	DI1 redefine	ALL	1~7	1	
PA-64	DI2 redefine	ALL	1~7	2	
PA-65	DI3 redefine	ALL	1~7	3	
PA-66	DI4 redefine	ALL	1~7	4	

6.2 Detailed parameter setting

Table 6-2 Detailed settings for the parameter

NO.	Name	Function description	Value
			range
0	Password	 Generally prevent some parameters modified falsely. If you need to modify the parameters, you need to modify this parameter to the password first. Password for general parameters is 315 Password for PA1 is 302 	1~1000
1	Motor Code	The value should be adapted for the motor you used Refer to section 6.3 for specific value and pasword is 302	20~200
2	Version	View the software version which couldn't be modified	0~9999 9
3	Initial Monitor	Monitoring variables for the initial display when the drive powered on. 0: Feedback speed; 1: Low data of the feedback positon 2: High data of the feedback positon 3: Low data of the position command 4: High data of the position error 6: High data of the position error 7: Feedback torque 8: Feedback current Iq 9: Reserved 10: Present control mode; 11: Input frequency of pulse command 12: Speed command (Integrated) 13: Torque command (Integrated) 14: Motro feedback-current position. 15: Feedback current Id 16: Reserved 17: Voltage of the DC bus 18: Drive status; 19: Error code;	0~19
4	Control Mode	Variables for the control mode 0: Position control mode 1: Speed control mode. 2: Torque control mode	0~5

		3: Speed trial run control mode	
		4: JOG control mode	
		5: Control mode for adjusting the zero of the	
		encoder	
	Proportional	The stiffness and responsiveness of the speed	
	Speed Loop	control loop is determined by the proportional	
_	Gain	speed gain and integral time. The default value is	1~5000
5		170. Gernerally if the load inertia is greater, the	Hz
		value should be modified larger. You could increase the value untill the resonance or noise	
		occurs and then decrease the value.	
	Integral Time	The value of the integral time has an effect on the	
	of Speed	stiffness and responsiveness of the speed control	
	Control Loop	loop. If the value is too samll, overshoot would	
	Control 200p	occur. While the value is too large, the response	1~1000
6		would be slow.	mS
		Gernerally, the value should be modified according	
		to the load inertia. Larger inertia needs larger	
		integral time.	
	Low-pass	Time contant for torque low-pass filter has an effect	
	Filter for	on the responsiveness of the torque control.	
	Torque	The function of this parameter is to restrain	
		resonance.	0~1000
7		Increasing the value will decrease the cutoff	×0.1mS
		frequency resulted in the smaller noise and	
		vibration but lower response.	
		If the interia of the load is large, you could increase the value to restrain the resonance.	
	Speed	Time contant of the speed detection filter has an	
	Detection	effect on the stiffness and responsiveness of the	
	Filter	speed control loop.	
		Increasing the value will decrease the cutoff	
8		frequency resulted in the smaller noise. If the value	1~1000
		is too large, the response will be slow and the	×0.1mS
		vibration or resonance will occur.	
		Gernerally, the value should be modified according	
		to the load inertia.	
	Proportional	Proportional gain of the position control loop has an	
	Position	effect on the stiffness and responsiveness of the	4 4000
9	Loop Gain	control loop. Increasing the value can improve the	1~1000
		response frequency of the position	/S
		Increasing the value will increase the stiffness and	
		decrease the position offset when the position	

		frequency is the same.	
		If the value is too large, the vibration or resonance	
		will occur.	
10	Position Feed Forward Gain	Increasing the value can reduce the position track error 100% means that the track error may be zero at any position frequency. If the value is too large, the vibration or resonance will occur. Gernerally the value is 0, excepting high responsive required by the application condition The value is the time contant of the low-pass filter	0~100%
11	Constant for PA10	for position feed forward gain. Be smoother to decrease the position overshoot.	0~1000 ×0.1ms
12	Electronic Gear Ratio (Numerator) N1	Electronic gear ratio of the servo system could match the position command of the host controller and the actual distance motor running. The electronic gear ratio can be calculated as the following:N1/M1 =F2/(S1*P1) P1:Number of pulses corresponding to 1mm in the host controller F2:Number of encoder pulses per circle (Default is 10000) S1:Screw pitch of the mechanical transmission (mm) The ideal range of the gear ratio is from 1/50 to 50.	1~ 30000
13	Electronic Gear Ratio (Denominato r) M1	Refer to parameter PA12	1~ 30000
14	External Pulse Input Type	There are three inputting type kinds for external pulse: 0: pulse + direction. 1: CCW pulse + CW pulse. 2: AB phase pulse.	0~2
15	External Pulse Direction	Normal direction Negative direction	0~1
16	Positioning Completed Width	The value is the position error range to judge whether the positioning is completed or not. In the position control mode, the COIN signal will be on when the value of the position error is less	0~ 30000 pluse

		then the value of the PA16.	
		In other control mode, the COIN signal will be ON	
		when the speed reachs the target speed command.	
	Excessive	The value is the detection range for error 4.	0~
47	Position	In the position control mode, if the position error is	30000
17	Error Range	larger than the value of PA17, the servo drive will	×100
		be disabled and the error code would be displayed.	pluse
18	Excessive Position Error Function Selection	0: Enable detection function for excesive position error.1: Disable the function for detecting the position error.	0~1
	Smooth Constant of Position Command	Smooth the position command by exponential deceleration, the value of PA19 is the time contant for the exponential deceleration. The pulse would not be lost but the position command may be delay.	
19		You could use the function at the following conditon. • The host controller does not have a deceleration / acceleration function. • The electronic gear ratio is larger than 10. • The position frequency is low.; • Stepping jump and vibration occurs when the	0~ 30000 ×0.1mS
		motor is running. The function will be disabled when the value is 0.	
20	Inhibition Function Selection	 0: Enable the inhibition function, and the FSTP signal is effective. If the CCW FSTP signal is ON, the drive could be drived in CCW direction. If the signal is OFF, the drive could not be drive in the CCW direction. It's the same to CW FSTP signal. When both of the FSTP signals are OFF, the drive will be disabled. 1: Disable the inhibition function. The motor could run free without FSTP signals. 	0~1
	JOG	Set the operation speed command for JOG control	-3600~3
21	Operation	mode.	600
	Command		r/min
22	Reserved		
23	Speed Command selection	O: Analog input voltage control the speed 1:select the 1 st speed command 2: select the 2 nd speed command 3: select the 3 rd speed command	0~5

		4: select the 4 th speed command			
		5:accord SC1,SC2 to select the speed conmand			
	1st Speed	When PA4=1 and PA23=5, the value of the	-3600		
24	Command	parameter PA24 is the source of the speed	~3600		
		command if SC1 and SC2 are OFF.	r/min		
	2nd Speed	When PA4=1 and PA23=5, the value of the	-3600		
25	Command	parameter PA25 is the source of the speed	~3600		
		command if SC1 is ON and SC2 is OFF.	r/min		
	3rd Speed	When PA4=1 and PA23=5, the value of the	-3600		
26	Command	parameter PA26 is the source of the speed	~3600		
		command if SC1 is OFF and SC2 is ON.	r/min		
	4th Speed	When PA4=1 and PA23=5, the value of the	-3600		
27	Command	parameter PA27 is the source of the speed	~3600		
		command if SC1 and SC2 are ON.	r/min		
	Target Motor	Set the speed-reached value. In all control mode			
	Speed	excepting position control mode, if the motor	0~3600		
28		feedback speed is larger than the value of the	r/min		
		parameter, the SCMP signal would be ON,	1/111111		
		otherwise SCMP would be OFF.			
	Analog	Set the proportional relationship between analog			
	Torque	input voltage and the value of torque command.			
	Command	Only in the torque control mode, the function is	10~100		
29	Gain	effective.	(0.1V/10		
20		The unit is 0.1V/100%. The default is 30, which	0%)		
		means that the value of the torque command would	0707		
		be set to 100% rate torque when the value of the			
		voltage is 3V.			
	Direction of	0: The direction of the torque is CCW when analog			
30	Torque	voltage is bigger than 0.	0~1		
	Command	1: The direction of the torque is CW when analog			
		voltage is bigger than 0.			
	Zero-offset	The value is the bias compensation for the analog			
31	Compensatio	signal of torque command.	-2000		
31	n for Torque		~2000		
	Command				
	Max speed	Limit the max speed when PA4=2.	0.0000		
32	limit of		0~3600		
	Torque		r/min		
	Command Digital output	Bit0=DO1, Bit1=DO2, Bit2=DO3;			
33	staus	Bitx shows DOx output. Bitx=1,and DOx output is			
33	Sidus	high; Bitx=0,and DOx output is low.			
34	Digital iutput	Bit0=DI1, Bit1=DI2, Bit2=DI3, Bit3=DI4;			
J4	Digital lutput	טונט–טוז, טונז–טוב, טונב–טוט, טונט=טו4,			

	staus	Bitx shows DIx output. Bitx=1,and DIx iutput is high; Bitx=0,and DIx iutput is low.	
35	Max speed limit of motor	Limit the max speed of motor	0~3600 r/min
36	Interal torque limit	Limit the max torque of motor. Tmax=PA36*Trated*1%.	5~800%
37	Negtive torque arrived set point	When negative torque arrived PA37*1%*Tn, the TRQL singnal output is active.	5~300%
38	Postive torque arrived set point	When posative torque arrived PA38*1%*Tn, the TRQL singnal output is active. In Sr or Jr mode, Tmax= PA38*Trated*1%.	5~300%
39	Min speed limit for Analog speed control mode	Limit the min speed when PA4=1,PA23=0.	0~1000 r/min
40	Acceleration Time	The value is the acceleration time for motor from 0 to 1000r/min and the process is linear. The function is effective only in speed control mode.	0~1000 0mS
41	Deceleration Time	The value is the deceleration time for motor from 0 to -1000r/min and the process is linear. The function is effective only in speed control mode.	0~1000 0mS
42	Accel/Decel S-curve	S-curve filter is for the speed smoothing of motion command. The value is the acceleration or deceleration time for the S-curve.	0~1000 0mS
43	Analog Speed Command Gain	Set the proportional relationship between analog input voltage and the speed command. Only when PA4=1 and PA22=1, the function is effective. The unit is r/(min*V). The default is 300, which means that the value of the speed command would be set to 3000r/min when the value of the voltage is 10V.	10~300 0 r/min/V
44	Direction of Speed Command	Select the direction for the external speed command. 0: When the voltage of the external speed command is positive, the speed direction is CCW. 1: When the voltage of the external speed command is positive, the speed direction is CW.	0~1

45	Zero-offset Compensatio n for Analog Speed Command	The value is the bias compensation for the analog signal of speed command.	-2000 ~2000
46	Low-pass Fliter for Speed Command	The value is the time contant of the low-pass filter for the analog speed command. The value is larger, the responsiveness is slower and thenosie is smaller. And then if the value is smaller, the responsiveness would be faster and the nosie may be larger. The function is effective only in the following conditions. 1. PA4=4 and PA22=1. 2. PA4=2.	0~1000 ms
47	On Delay Time of Electromagn eti-c Brake	The value is the delay time for the electromagnetic brake turning on.	
48	Off Delay Time of Electromagn etic Brake	The value is the delay time for the electromagnetic brake turning off.	0~300 ×10mS
49	Target Speed for Turning Off Electromagn eti-c Brake	When the motor is running, if the servo on signal turn off or error occurs, the BRK siganl will turn off when the feedback speed is slower than the value of the parameter. The actual delay time is chosed between PA48 and the operation time of PA49.	0~3600 r/min
50	Sampling Gain for Bus Voltage	The value is the linear gain for DC Bus voltage sampling signal. The value is prohibited to be modified.	10~300
51	Dynamic electronic Gear Ratio enable	 0: Dynamic electronic Gear Ratio is disabled. The fuction of DI INH is pulse forbid. Electronic gear ratio EGR=PA12 / PA13. 1: Dynamic electronic Gear Ratio is enabled. When INH is active level, EGR=PA52 / PA13; When INH is not active, EGR=PA12 / PA13. 	0~1
52	Second electronic Gear Ratio (Denominato r) M2	Refer to PA51	

	Inside force	1,the driver is enabled,input SON is invalid;		
53		·	0~1	
	enable	0,driver enable accord to input singal SON		
- 4	Z output	0, Z output singal is original Z singal;	0~1	
54	pulse wide	1,Z output pulse wide is wider than 0.2ms.		
	select			
	AB output	0,1,AB output is original AB singal;		
55	dividing	N>1,AB output frequency is N divided	0~255	
	factor			
	Outport	PA56.x=0, DO(x+1) effective level is low;		
56	effect level	PA56.x=1, DO(x+1) effective level is high;	000~111	
	set			
	DO1 redefine	=1,DOx is defined to ALM; Sevo is alarm;		
		=2,DOx is defined to SRDY; Sevo is ready;		
		=3,DOx is defined to COIN; Position arrived;	4 5	
57		=4,DOx is defined to BRK; control brake	1~5	
		=5, DOx is defined to TRQL; Torque is arrived.		
		X=1,2,3,4,5.		
58	DO2 redefine			
59	DO3 redefine	Refer to PA57	1~5	
60	Reserved			
0.4	Input filter	The time contant for anti-shaking function of the	0~100m	
61	time	input terminal.	S	
00	Inport effect	PA62.x=0, DI(x+1) effective level is low;	0000	
62	level set	PA62.x=1, DI(x+1) effective level is high;	~1111	
	DI1 redefine	=1,Dix is defined to SON;		
		=2,Dix is defined to CLE/SC1/ZCLAMP;		
		=3,Dix is defined to INH/SC2;		
		=4,Dix is defined to ALRS;		
63		=5,Dix is defined to FSTP;	1~6	
		=6,Dix is defined to RSTP;		
		=7,Dix is defined to AIR; Analog input reverse.		
		X=1,2,3,4,5,6,7.		
64	DI2 redefine	Refer to PA63	1~6	
65	DI3 redefine	Refer to PA63	1~6	
66	DI4 redefine	Refer to PA63	1~6	
	211100011110	1.0.00 17.00		

Chapter 7 Match servo driver and servo motor

Before you power the driver and enable it to work, the motor code parameter PA1 must be correctly set. Or the driver might alarm and can't work normally, even the motor might be out of control.

Change of PA1 need specially authority. Only after PA2 is set to 302, PA1 is allowed to change.

After the right PA1 is set, you should write the parameters into the driver ((When EE-SET is displayed, please press the **Enter** key for 3 seconds, and then "FInISh" would occur on the display, which means the saving operation is completed, chapter 4 shows how to write parameters into the driver), The PA1 could be effective after repower the drive.

For each drive model, the adaptation scope for the motor is shown as the following:

Drive H3N-LD is adaptive for 60, 80, and 90 series motor.

Drive H3N-DD is adaptive for 60, 80, 90, and 110 series motor.

Drive H3N-TD/ED is adaptive for 80, 90, 110 and 130 series motor.

Drive H3N-FD is adaptive for 110, 130 and 150 series motor.

Drive H3N-GD is adaptive for 130, 150 and 180 series motor.

If client want to match other motors which is not producted by our company, please contect our technical support.

7.1 Motor code list for H3N-LD

Table 7-1 Motor code list for H3N-LD

	Motor model	Power	Torque	Rated	Rated
Code				Speed	Current
		(kw)	(Nm)	(rpm)	(A)
21	60-G00630	0.2	0.6	3000	1.5
23	60-G01330	0.4	1.3	3000	2.8
25	60-G01930	0.6	1.9	3000	3.5
22	60-GD00630	0.2	0.6	3000	2
24	60-GD01330	0.4	1.3	3000	2.8
26	60-GD01930	0.6	1.9	3000	3.5
31	80-G01330	0.4	1.3	3000	2.6
33	80-G02430	0.75	2.4	3000	4.2
35	80-G03330	1	3.3	3000	4.5
32	80-GD01330	0.4	1.3	3000	2.3
34	80-GD02430	0.75	2.4	3000	4
36	80-GD03330	1	3.3	3000	4.5
41	90-G02430	0.75	2.4	3000	3
45	90-G03520	0.75	3.5	2000	3
48	90-G04025	1	4	2500	4
Others	80-G02430	0.75	2.4	3000	4.2

7.2 Motor code list for H3N-DD

Table 7-2 Motor code list for H3N-DD

		Power	Torque	Rated	Rated
Code	Motor model		•	Speed	Current
		(kw)	(Nm)	(rpm)	(A)
21	60-G00630	0.2	0.6	3000	1.5
23	60-G01330	0.4	1.3	3000	2.8
25	60-G01930	0.6	1.9	3000	3.5
22	60-GD00630	0.2	0.6	3000	2
24	60-GD01330	0.4	1.3	3000	2.8
26	60-GD01930	0.6	1.9	3000	3.5
31	80-G01330	0.4	1.3	3000	2.6
33	80-G02430	0.75	2.4	3000	4.2
35	80-G03330	1	3.3	3000	4.5
32	80-GD01330	0.4	1.3	3000	2.3
34	80-GD02430	0.75	2.4	3000	4
36	80-GD03330	1	3.3	3000	4.5
41	90-G02430	0.75	2.4	3000	3
45	90-G03520	0.75	3.5	2000	3
48	90-G04025	1	4	2500	4
51	110-G02030	0.6	2	3000	4
53	110-G04030	1.2	4	3000	5
56	110-G06020	1.2	6	2000	6
Others	80-G02430	0.75	2.4	3000	4.2

7.3 Motor code list for H3N-TD

Table 7-3 Motor code list for H3N-TD

	Motor model	Power	Torque	Rated	Rated
Code				Speed	Current
		(kw)	(Nm)	(rpm)	(A)
31	80-G01330	0.4	1.3	3000	2.6
33	80-G02430	0.75	2.4	3000	4.2
35	80-G03330	1	3.3	3000	4.5
32	80-GD01330	0.4	1.3	3000	2.3
34	80-GD02430	0.75	2.4	3000	4
36	80-GD03330	1	3.3	3000	4.5
41	90-G02430	0.75	2.4	3000	3
45	90-G03520	0.75	3.5	2000	3
48	90-G04025	1	4	2500	4
51	110-G02030	0.6	2	3000	4
53	110-G04030	1.2	4	3000	5
55	110-G05030	1.5	5	3000	6
56	110-G06020	1.2	6	2000	6
61	130-G04025	1	4	2500	4
63	130-G05020	1	5	2000	4.5
64	130-G05025	1.3	5	2500	5
65	130-G05030	1.5	5	3000	6
67	130-G06025	1.5	6	2500	6
69	130-G07720	1.6	7.7	2000	6
72	130-G10010	1	10	1000	5
73	130-G10015	1.5	10	1500	6
Others	110-G04030	1.2	4	3000	5

7.4 Motor code list for H3N-FD

Table 7-4 Motor code list for H3N-FD

		Power	Torque	Rated	Rated
Code	Motor model	Power		Speed	Current
		(kw)	(Nm)	(rpm)	(A)
51	110-G02030	0.6	2	3000	4
53	110-G04030	1.2	4	3000	5
55	110-G05030	1.5	5	3000	6
56	110-G06020	1.2	6	2000	6
58	110-G06030	1.8	6	3000	8
61	130-G04025	1	4	2500	4
63	130-G05020	1	5	2000	4.5
64	130-G05025	1.3	5	2500	5
65	130-G05030	1.5	5	3000	6
67	130-G06025	1.5	6	2500	6
69	130-G07720	1.6	7.7	2000	6
70	130-G07725	2	7.7	2500	7.5
71	130-G07730	2.4	7.7	3000	9
72	130-G10010	1	10	1000	5
73	130-G10015	1.5	10	1500	6
75	130-G10025	2.6	10	2500	10
78	130-G15015	2.3	15	1500	9.5
79	130-G15025	3.8	15	2500	17
82	150-G15020	3	15	2000	14
83	150-G15025	3.8	15	2500	17
86	150-G18020	3.6	18	2000	16.5
Others	130-G07720	1.6	7.7	2000	6

7.5 Motor code list for H3N-GD

Table 7-5 Motor code list for H3N-GD

	Motor model	Power	Torque	Rated	Rated
Code				Speed	Current
		(kw)	(Nm)	(rpm)	(A)
65	130-G05030	1.5	5	3000	6
67	130-G06025	1.5	6	2500	6
69	130-G07720	1.6	7.7	2000	6
70	130-G07725	2	7.7	2500	7.5
71	130-G07730	2.4	7.7	3000	9
72	130-G10010	1	10	1000	5
73	130-G10015	1.5	10	1500	6
75	130-G10025	2.6	10	2500	10
78	130-G15015	2.3	15	1500	9.5
79	130-G15025	3.8	15	2500	17
82	150-G15020	3	15	2000	14
83	150-G15025	3.8	15	2500	17
86	150-G18020	3.6	18	2000	16.5
89	150-G23020	4.7	23	2000	20.5
92	150-G27020	5.5	27	2000	20.5
94	180-G17215	2.7	17.2	1500	10.5
95	180-G19015	3.0	19	1500	12
96	180-G21520	4.5	21.5	2000	16
97	180-G27015	4.3	27	1500	16
98	180-G35010	3.7	35	1000	16
99	180-G35015	5.5	35	1500	19
Others	130-G15015	2.3	15	1500	9.5

7.6 Motor code list for H3N-ED

Table 7-6 Motor code list for H3N-ED

		Power	Torque	Rated speed	Rated
Code	Motor Model	(Kw)	(N.m)	(rpm)	current
					(A)
22	60ST-M00630	0.2	0.64	3000	1.2
23	60ST-M01330	0.4	1.27	3000	2.8
24	60ST-M01930	0.6	1.91	3000	3.7
25	80ST-M01330	0.4	1.3	3000	2.6
26	80ST-M02430	0.75	2.4	3000	4.2
27	80ST-M03330	1	3.3	3000	4.2
30	80ST-M04025	1	4	2500	4.4
31	90ST-M02430	0.75	2.4	3000	3
32	90ST-M03520	0.75	3.5	2000	3
33	90ST-M04025	1	4	2500	4
34	110ST-M02030	0.6	2	3000	4
35	110ST-M04030	1.2	4	3000	5
36	110ST-M05030	1.5	5	3000	6
37	110ST-M06020	1.2	6	2000	6
38	110ST-M06030	1.8	6	3000	8
44	130ST-M04025	1.0	4	2500	4
45	130ST-M05025	1.3	5	2500	5
46	130ST-M06025	1.5	6	2500	6
47	130ST-M07720	1.6	7.7	2000	6
48	130ST-M07730	2.4	7.7	3000	9
49	130ST-M10015	1.5	10	1500	6
50	130ST-M10025	2.6	10	2500	10
51	130ST-M15015	2.3	15	1500	9.5
52	130ST-M12020	2.4	12	2000	10
Others	110ST-M04030	1.2	4	3000	5

Chapter 8 Troubleshooting

When any trouble occurs, the "Err xx" would be dispalyed on the digital keypad and blink. "xx" is the code for the error kind. The common errors are Err 3, Err 6, Err 9, Err 11, Err 12, Err 17 and Err 38, which would be due to improper wiring or mechanical problem.

Generally, the drive could work properly after repowering. If the error still occurs or the occurs frequently, please contact with our SE or FAE.

8.1 Fault messages table

Table 8-1 Fault messages

Display	E. II.N.	For It Don't die		
Code	Fault Name	Fault Decription		
	Normal	There is no error.		
1	Overspeed	Motor's control speed exceeds the limit of		
1		normal speed.		
2	Overvoltage	Max circuit voltage exceeds its maximum		
		allowable value.		
3	Undervoltage	Max circuit voltage is below its minimun		
3		specified value.		
4	Excessive position	Position control deviation value exceeds the		
-	deviation	limit of its allowable setting value.		
5	PA setted error	PA setted error		
6	Motor code setted error	PA1 setted error		
7	Limit switch error	Forward or Reverse limit switch is activated		
8	Position counter overflow	Position counter overflow occurs.		
9	Encoder error	Pulse signal is in error.		
11	Current response fault	Current error has exceeded the specified value		
11	Current response rault	for a long time.		
		Main circuit current is higher than 1.5		
12	Short circuit	multiple of drive's instantaneous maximum		
		current value.		
13	Drive temperature error	The temperature of drive is over high.		
14	Regeneration error	Regeneration control operation is in error.		
17	Speed response fault	Speed error has exceeded the specified value		
17	opced response radit	for a long time.		
19	Warm reset	Software warm global reset		

		An error accurs when writing the curret settings	
20	EE-PROM error	into	
		EE-PROM.	
21	DI function set error	Digtal input port function seting duplicated	
22	DO function set error	Digtal output port function seting duplicated	
	Current consor adjustment	Adjusted value of the current sensor exceeds	
23	Current sensor adjustment	the limit of its allowable setting value when	
	error	perform electrical adjustment.	
29	Overload for motor	Servo motor is overload.	
30	Pulse Z error	The pulse Z of the encoder is lost.	
32	III//M orror	The wiring connections of U,V,W (for encoder	
32	U,V,W error	interface) are in error	
	Instantaneous avariand for	The instantaneous load of the motor is heavier	
37	Instantaneous overload for motor	than 1.5 multiple of motor's maximum load	
	HIOLOI	value	
38	Motor temperature error	The motor is overload for a long time.	
10, 15, 16, 18, 24, 25, 26, 27, 28, 31,		Decembed	
33, 34, 35, 36		Reserved	

8.2 Potential Cause and Corrective Actions

Table 8-2 Corrective actions for trouble shooting

Code	Fault Name	Cause	Corrective Actions	
	Overspeed	Improper input instrucion	Check the pulse frequency and	
		pulse	the electronic gear ratio	
		The load inertia is too	Decrease the load inertia	
Err1		large.	Increase the Accel/Decel time	
		Encoder fault	Replace the motor	
		Encoder cable fault	Replace the cable	
		The max. speed setting error	Modify or recover the parameter	
		Servo drive default	Replace the drive	
Err2	Overvoltage	The power voltage is too high The power waveform is abnormal	Check the power supply.	
	Undervoltage	Servo drive default	Replace the drive	
F2		The power voltage is too low.	Check the power supply.	
Err3		Transformer capacity is not	Replace the transformer by a	
		enough.	larger one	
		The cable is loose	Check and fix the cable	
	Excessive position deviation	Encoder fault	Replace the motor	
		The rigidity is not enough	Increase the PA5 and PA9	
F 4		The output torque of motor	Check the funciton for torque limit	
Err4		is not enough.	Decrease the load	
			Replace the motor and drive.	
		The pulse frequency is inapplicable	Decrease the frequency.	
Err5	PA setted error	PA setted error	Set right PA	
Err5	Motor code PA1 setted error	PA 1setted error	Set right PA1	
Err7	Limit switch error	FSTP or RSTP is OFF	Check the digital input signal	

		Inhibition function is enabled	Disable the function
Err8	Position counter	The motor is stuck	Check the mechanical structure
overflow		Pulse signal is abnormal	Check the pulse signal
	Encoder error	Encoder fault	Replace the motor
Err9		Encoder cable fault	Replace the cable
		The encoder cable is too	Please shorten the cable or
	Current response fault Short circuit	long	bold the core
		Servo drive fault	Replace the servo drive
		Short-circuit between U, V and W	Check the wiring
Err11		Poorly grounded	Confirm to be grounded normally
		Winding insulation of the motor is damaged	Replace the motor
		Short-circuit between U, V and W	Check the wiring
Err12		The load is too heavy	Replace the drive by a larger one
		Servo motor fault	Replace the motor
		Servo drive fault	Replace the drive
Err13	Drive	Run for a long time with	Decrease the load or choose a
	temperature error	overload	larger drive.
		Brake circuit fault	Replace the drive
Err14	Regeneration	The capacity of	Increase the deceleration time
	Speed response fault	regeneration system is not enough	Decrease the system inertia
		Parameter is set incorrectly	Modify or recover the parameters
Err17		Interval time between start	Set the Accel and Decel time
		and stop is too short.	correctly
		Wiring fault for U, V, W	Confirm the wiring
Err19	Warm reset	The power supply instability	Check wiring or replace the drive
Err20	EEPROM error	Servo drive fault	Replace the servo drive

Err21	DI function set error DO function set error	there is duplication among these 4 parameters. Check PA57,PA58,PA59, there is duplication among	Set right parameter datas Set right parameter datas
Err23	Current sensor adjustment fault	these 3 parameters. Servo drive fault	Replace the servo drive
		The load is too heavy	Decrease the load or choose a larger drive and motor.
Err29	Overload for motor torque	Motor code is inapplicability	choose a larger drive and motor.
		Parameter is set incorrectly	Modify or recover the parameters about motor code and torque.
		Encoder fault	Replace the servo motor
Err30	Pulse Z error	Encoder cable fault	Replace the encoder cable
		Shielding ground fault	Confirm interface and I/O circuit
	U,V,W signal error for encoder	Encoder fault	Replace the servo motor
Err32		Cable or shielding fault	Replace the cable
		Encoder signal circuit fault	Replace the drive
	Instantaneous overload for motor	The load is too high for motor	Decrease the load or choose a larger motor
Err37		The motor is short-circuited	Confirm the wiring and terminals
		The motor code is incorrectly	Confirm the code parameter
		The load torque is too high	Decrease the load or choose a
Err38	Motor temperature error	for motor	larger motor
LIIJO		The motor code is set	Confirm and modify the
		incorrectly	parameter

Chapter 9 Connection to motor

The welding definition of the encoder cable is shown as the following:

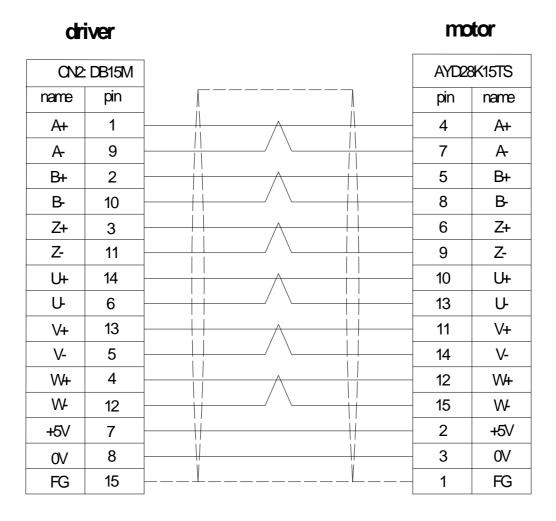
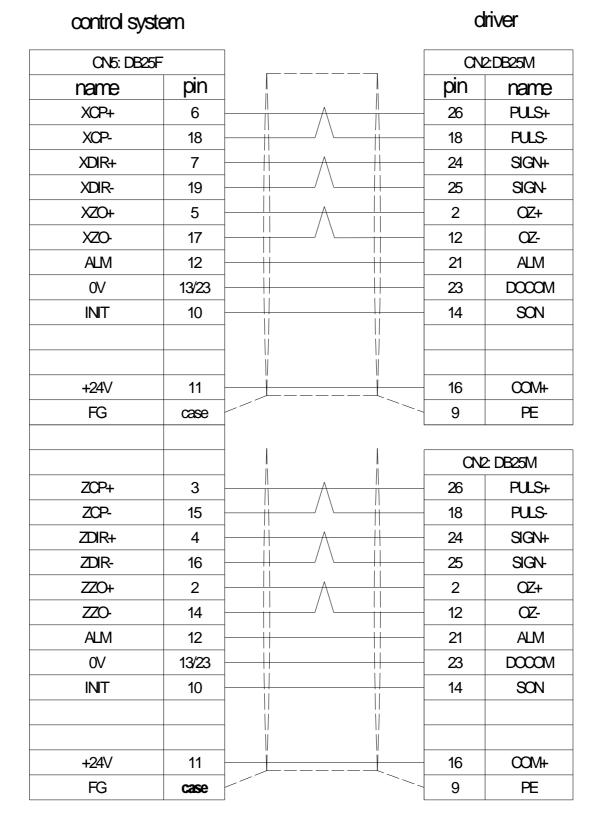



Figure 9-1 Connecting diagram for encoder cable between Hirden drive and motor

Chapter 10 System connection

The connection between H3N Driver and HNC control system show as below:

