Sheetl

Grotius Pocket Algoritme Approach, Designed and written by a linux user, Github Grotius-CNC

Date: 25-06-2020

Preproccesing:

Given data:

Algoritme rules:

C++ input data :

C++ output data :

C++ closed sector data :

C++ variable

Split up all primitives as lines, arc’s, that are passing intersection points to primitives beween
Intersection points, the list must be ordered.

1.Primitive numbers (p), a primitive can be a line, arc, linestrip, spline etc

2.Primitive end intersection (1)

1. Incrementing a sector number, may only be incremented to a number not containing the closed sector list

2. Decrementing a vector number, must be decremented to a number not containing the closed sector list

3.A sector is closed when the primitive end intersection is seen for the second time, the | number is send to
The cs list

4. When a primitive has a end intersection,
This is marked in the Action (a) list as S++ (sector increase) or S-- (sector decrease)

5. When a Intersection (1) is spotted for the first time,
The action is S++. When a intersection (l) is spotted for the second time, the action is S--

2d container that holds the

std::vector<std::vector<int>> id; Primitive number and the primitive end intersection

id[index][0] = primitive (p) The first dataplace will be the primitive (p) number
The second dataplace will be

id[index][1] = primitive end intersection (I) The primitive intersection (I) number

3d container that holds the

std::vector<std::vector<std::vector<int>>> od; Area, the sector number, including their primitives
od[index][0] = area (s) The first dataplace will contain the Area of the sector
od[index][0] = sector (s) The second dataplace will contain the sector number (s)
od[index][1] = primitive (p) The thirth dataplace will be the primitive (p) number
std::vector<int> cs; Closed sector list.

int a; Action, 0=no action, 1=increase, 2=decrease

ints; Sector, will hold the current sector

Page 1

Sheetl

Example 1:
p(5) ‘
i ~ pB)
i(2) p(4) i(1)
-~ p(6) -~ p@
/ i(3) p(0) i(0)
StartI
R ~ p)
Primitives (p) Primitive end intersection (l) Sector (s) Action (a) Closed Sectors (cs)
0 0 0 S++
1 0 1 S-- 1
2 1 0 S++
s] 1 2
4 2 S++
5 2 3 S-- 3
6 3 0 S++
7 3 4 S-- 4
The color flags are defining the steps to do at each row:
Solution :
Sector (s) Primitives (p) Area (a) Cw Ccw
0 0,2,4,6 <0 X
1 1 >0 X
2 3 >0 X
3 5 >0 X
4 7 >0 X
Comment:

At p(0) we have a end intersection 1(0), when we spot a new, unused intersection as I1(0), we increase the sector incremented by 1
with a unused sector number. If the sector number was used before, we increment until we have a unused sector number.

At p(1) we spot a already used i(0), so we decrease. We look in the closed sector list, we can not use cs(1), this was used before,
We decrease to 0.

Page 2

Sheetl

Example 2:
o p(9)
p(10) 5
- 1s(2) s
— P
;] p(8)
p(4) =
i) - iB) /

p(17)

p(18)

(3
5(0) — p(0) 0 |
~1s(6)

/N
R

p(15

p(19)

Page 3

Sheetl

Primitives (p) Primitive end intersection (l) Sector (s) Action (a) Closed Sectors (cs)

0 0 0 s++

1 1 1 St++

2 2

3 2

4 1 2 S-- 2
5 2 1 S++

6 3 3 S++

7 4 4 S++

8 5

9 5

10 5 S-- ©
11 5 4 S++

12 6

13 6

14 5 6 S-- 6
15 3 4 S-- 4
16 2 3 S-- 3
17 0 1 S-- 1
18 0

19 0

Comment:

At the line p(6), we see that from the Action (a) we have to increment the section. But 2 already excists in the cs list, so we increment
To the value 3. This is quite a tricky one to spot. See the yellow flags.

At the line p(15) we have to decrement the section from value 6 down. Value 5 is in the cs list, so we
Decrement to value 4. See the green flags.

Solution :

Sector (s) Primitives (p) Area (a) Cw Ccw
0 0,18,19 <0 X

1 1,5,17 >0 X

2 2,34 <0

3 6,16 <0 X

4 7,11,15 >0 X

5 8,9,10 <0 X

6 12,13,14 <0

Page 4

Sheetl

Page 5

	Sheet1

