
Sheet1

Page 1

Grotius Pocket Algoritme Approach, Designed and written by a linux user, Github Grotius-CNC

Date: 25-06-2020

Preproccesing:

Given data: 1.Primitive numbers (p), a primitive can be a line, arc, linestrip, spline etc

2.Primitive end intersection (I)

Algoritme rules: 1. Incrementing a sector number, may only be incremented to a number not containing the closed sector list

2. Decrementing a vector number, must be decremented to a number not containing the closed sector list

C++ input data : std::vector<std::vector<int>> id;

id[ index ][ 0 ] = primitive (p) The first dataplace will be the primitive (p) number

id[ index ][ 1 ] = primitive end intersection (I)

C++ output data : std::vector<std::vector<std::vector<int>>> od;

od[ index ][ 0 ] = area (s) The first dataplace will contain the Area of the sector

od[ index ][ 0 ] = sector (s) The second dataplace will contain the sector number (s)

od[ index ][ 1 ] = primitive (p) The thirth dataplace will be the primitive (p) number

C++ closed sector data : std::vector<int> cs; Closed sector list.

C++ variable int a; Action, 0=no action, 1=increase, 2=decrease

int s; Sector, will hold the current sector

Split up all primitives as lines, arc’s, that are passing intersection points to primitives beween
Intersection points, the list must be ordered.

3.A sector is closed when the primitive end intersection is seen for the second time, the I number is send to 
The cs list

4. When a primitive has a end intersection, 
This is marked in the Action (a) list as S++ (sector increase) or S-- (sector decrease)

5. When a Intersection (I) is spotted for the first time,
The action is S++. When a intersection (I) is spotted for the second time, the action is S--

2d container that holds the 
Primitive number and the primitive end intersection

The second dataplace will be
The primitive intersection (I) number

3d container that holds the 
Area, the sector number, including their primitives

p(19)



Sheet1

Page 2

Example 1:

Primitives (p) Primitive end intersection (I) Sector (s) Action (a) Closed Sectors (cs)

0 0 0 s++

1 0 1 s-- 1

2 1 0 s++

3 1 2 s-- 2

4 2 0 s++

5 2 3 s-- 3

6 3 0 s++

7 3 4 s-- 4

The color flags are defining the steps to do at each row:

Solution :

Sector (s) Primitives (p) Area (a) Cw Ccw

0 0,2,4,6 <0 x

1 1 >0 x

2 3 >0 x

3 5 >0 x

4 7 >0 x

Comment:
At p(0) we have a end intersection I(0), when we spot a new, unused intersection as I(0), we increase the sector incremented by 1 
with a unused sector number. If the sector number was used before, we increment until we have a unused sector number.

At p(1) we spot a already used i(0), so we decrease. We look in the closed sector list, we can not use cs(1), this was used before,
We decrease to 0.

i(3) i(0)

i(1)i(2)

p(0)

p(2)

p(4)

p(1)

p(3)

p(5)

p(19)

p(6)

Start



Sheet1

Page 3

Example 2:

i(0)

i(1)

i(2) i(3)

i(4)

i(5)

p(0)

p(2)

p(3)

p(4)

p(5)

p(16)

p(7)
p(8)

p(9)

p(10)

p(11)

p(12)

p(13)

p(15)

p(6)

p(17)

p(18)

p(19)

p(1)

s(2)

s(0)

s(1)

s(3)

s(4)

s(5)

s(6)

Start



Sheet1

Page 4

Primitives (p) Primitive end intersection (I) Sector (s) Action (a) Closed Sectors (cs)

0 0 0 s++

1 1 1 s++

2 2

3 2

4 1 2 s-- 2

5 2 1 s++

6 3 3 s++

7 4 4 s++

8 5

9 5

10 4 5 s-- 5

11 5 4 s++

12 6

13 6

14 5 6 s-- 6

15 3 4 s-- 4

16 2 3 s-- 3

17 0 1 s-- 1

18 0

19 0

Comment:

Solution :

Sector (s) Primitives (p) Area (a) Cw Ccw

0 0,18,19 <0 X

1 1,5,17 >0 X

2 2,3,4 <0 X

3 6,16 <0 X

4 7,11,15 >0 X

5 8,9,10 <0 X

6 12,13,14 <0 X

At  the line p(6), we see that from the Action (a) we have to increment the section. But 2 already excists in the cs list, so we increment
To the value 3. This is quite a tricky one to spot. See the yellow flags.

At the line p(15) we have to decrement the section from value 6 down. Value 5 is in the cs list, so we 
Decrement to value 4. See the green flags.



Sheet1

Page 5


	Sheet1

