Grotius Pocket Algoritme Approach, Designed and written by a linux user, Github Grotius-CNC

Date: 25-06-2020	
Preproccesing:	Split up all primitives as lines, arc's, that are passing intersection points to primitives beween Intersection points, the list must be ordered.
Given data:	1.Primitive numbers (p), a primitive can be a line, arc, linestrip, spline etc 2.Primitive end intersection (I)
Algoritme rules:	1. Incrementing a sector number, may only be incremented to a number not containing the closed sector list 2. Decrementing a vector number, must be decremented to a number not containing the closed sector list 3.A sector is closed when the primitive end intersection is seen for the second time, the I number is send to The cs list 4. When a primitive has a end intersection, This is marked in the Action (a) list as $\mathrm{S}++$ (sector increase) or S -- (sector decrease) 5. When a Intersection (I) is spotted for the first time, The action is S^{++}. When a intersection (I) is spotted for the second time, the action is S --
C++ input data :	std::vector<std:::vector<int>> id; 2d container that holds the id $[$ index $][0]=$ primitive (p) Primitive number and the primitive end intersection The first dataplace will be the primitive (p) number id [index $][1]=$ primitive end intersection (I) The second dataplace will be
C++ output data :	std::vector<std:::vector<std::vector<int>>> od; 3d container that holds the Area, the sector number, including their primitives $\operatorname{od}[$ index $][0]=$ area (s) The first dataplace will contain the Area of the sector $\operatorname{od}[\operatorname{index}][0]=$ sector (s) The second dataplace will contain the sector number (s) $\operatorname{od}[\operatorname{index}][1]=$ primitive (p) The thirth dataplace will be the primitive (p) number
C++ closed sector data :	std::vector<int> cs; Closed sector list.
C++ variable	int a; Action, 0=no action, 1=increase, 2=decrease int s; Sector, will hold the current sector

Primitives (p)	Primitive end intersection (l)	Sector (s)	Action (a)	Closed Sectors (cs)
0	0	0	s++	
1	0	1	S--	1
2	1	0	s++	
3	1	2	S--	2
4	2	0	s++	
5	2	3	s--	3
6	3	0	s++	
7	3	4	s--	4

The color flags are defining the steps to do at each row:
Solution:

Sector (s)	Primitives (p)	Area (a)	Cw	
0	$0,2,4,6$	<0	Ccw	
1	1	>0		x
2	3	>0	x	
3	5	>0	x	
4	7	>0	x	

Comment:

At $p(0)$ we have a end intersection $I(0)$, when we spot a new, unused intersection as $I(0)$, we increase the sector incremented by 1 with a unused sector number. If the sector number was used before, we increment until we have a unused sector number.

At $p(1)$ we spot a already used $i(0)$, so we decrease. We look in the closed sector list, we can not use $\operatorname{cs}(1)$, this was used before, We decrease to 0 .

Sheet1

Example 2:

Page 3

Sheet1

Primitives (p)	Primitive end intersection (I)	Sector (s)	Action (a)	Closed Sectors (cs)
0	0	0	s++	
1	1	1	S++	
2		2		
3		2		
4	1	2	S--	2
5	2	1	S++	
6	3	3	S++	
7	4	4	S++	
8		5		
9		5		
10	4	5	S--	5
11	5	4	s++	
12		6		
13		6		
14	5	6	S--	6
15	3	4	S--	4
16	2	3	S--	3
17	0	1	S--	1
18		0		
19		0		

Comment:

At the line $p(6)$, we see that from the Action (a) we have to increment the section. But 2 already excists in the cs list, so we increment To the value 3 . This is quite a tricky one to spot. See the yellow flags.

At the line $p(15)$ we have to decrement the section from value 6 down. Value 5 is in the cs list, so we Decrement to value 4 . See the green flags.
Solution:

Sector (s)	Primitives (p)	Area (a)	Cw	
0	$0,18,19$	<0		Ccw
1	$1,5,17$	>0	X	
2	$2,3,4$	<0		
3	6,16	<0		
4	$7,11,15$	>0		
5	$8,9,10$	<0		X
6	$12,13,14$	<0		X

