
The Wayback Machine - http://web.archive.org/web/20120412201014/http://www.…

Using the Posemath Library

by

Karl Murphy

Updated 4/14/99

This gives examples of how to use the posemath library, part of the RCS libary.
Most of the examples are given in C. Posemath also supports C++ and the
corresponding code is more compact due to operator overloading.

See Also RCS lib Document on posemath

Introduction

A Vector is a 3 dimentional quantity that has magnitude and direction. A vector is
not a point although a vector can be used to represent the relative position
between two points. A vector is not fixed in space, it only has magnitude and
direction. Imagine an arrow that can be slid all around (although not rotated).

A Reference Frame is a set of three mutually perpendicular unit vectors, often
denoted x, y, and z, and an associated point called the origin.

Vectors

Given a reference frame A and a vector v, there exists 3 unique scalars, vx, vy, and
vz such that

v = vx x + vy y + vz x

The representation of the vector v in the reference frame A is the three scalar
values, [vx, vy, vz]T. Note that vx is the dot product of v and x, etc. The values [vx,
vy, vz] are called v in A and are the representation used most often in posemath.
The three scalars are meaningless without an associated reference frame.

Example 1

posemath examples http://web.archive.org/web/20120412201014/http://w...

1 of 10 1/24/24, 14:56

http://web.archive.org/web/20120412201014/http://www.isd.mel.nist.gov:80/projects/rcslib/posemathdoc
http://web.archive.org/web/20120412201014/http://www.isd.mel.nist.gov:80/projects/rcslib/posemathdoc

The vector v is the relative position of point P from the origin of frame A. Express
the vector in posemath notation.

PmCartesian v = {10, 5, 0}; /* vector v in frame A */

The position of a point relative to a reference frame is the vector from the origin of
the frame to the point expressed in the frame. The representation of v (the vector
from the origin of A to P) is different in different frames that have different
orientations but always has the same magnitude. The position of P in different
frames might also have different magnitudes.

Posemath also supports cylindrical and spherical representations.

Reference Frame Rotations

Coordinate frames can be rotated relative to one another. There are many ways to
represent rotations. A rotation matrix is a 3x3 matrix where the columns are the
representations of the x, y, and z axis of the rotated frame expressed in the
unrotated frame. See the figure below.

The elements of the matrix are the dot products of the various axis (ay dot bz = -1).

The vector representation in a rotated frame can be calculated by using normal
vector - matrix multiplication as shown below.

posemath examples http://web.archive.org/web/20120412201014/http://w...

2 of 10 1/24/24, 14:56

Strictly speaking, the vectors va and vb are the same, they both span from the
origin to the point P, even thought their representations in the two frames are
different.

Besides the rotation matrix, posemath supports many representations for rotations.
One of which, the quaternion, is a strange but computationally nice representation.
It has a scalar and vector part. The scalar is the cosine of half angle of rotation and
the vector is the unit rotation vector multiplied by the sine of the half angle. I told
you it was weird. Because of the computational niceties, posemath routines have a
bias toward using quaternions. When you use them, think of them as a rotation
matrix. pmPrintf() will even convert them to a matrix and print them that way.

Example 2

Rotate bv to get av as shown in the figure above.

PmCartesian av; /* vector av in frame A */

PmCartesian bv = {10, 0, -5}; /* vector bv in frame B */

PmQuaternion rq; /* the rotation expressed as

a quaternion */

PmRotationMatrix rm; /* the rotation expressed as

a matrix */

/* Method 1 */

rm = (PmRotationMatrix) {{1,0,0},{0,0,1},{0,-1,0}};

/* When reading a matrix, quaterian, unit vector, etc.

as ASCII you should normalize it if not all +-1 & 0's.

We will do it anyway */

posemath examples http://web.archive.org/web/20120412201014/http://w...

3 of 10 1/24/24, 14:56

pmMatNorm(rm, &rm);

pmMatCartMult(rm, bv, &av);

/* Method 2 */

/* represent the rotation as a quaternion */

pmAxisAngleQuatConvert(PM_X, PM_PI / 2, &rq);

/* or */

pmMatQuatConvert(rm, &rq);

pmQuatCartMult(rq, bv, &av);

/* print rm as a quaternion and as a rotation matrix */

pmPrintf("As a quat %q, as a matrix \n%Q\n", rq, rq);

/* in C++ */

av = rq * bv;

Example 2b

Now the other way: Rotate av to get bv as shown in the figure above.

PmQuaternion rqInv; /* the rotation inverse */

pmQuatInv(rq, &rqInv); /* invert rq */

pmQuatCartMult(rqInv, av, &bv);

/* in C++ */

bv = (-rq) * av; // (-rq) is the inverse of rq

Example 3

Given the pan tilt unit and the coordinate frames as shown, compute the rotation
from the mount to the camera. Neglect translations

posemath examples http://web.archive.org/web/20120412201014/http://w...

4 of 10 1/24/24, 14:56

double pan, tilt; /* pan and tilt in rads */

PmQuaternion panTilt; /* pan tilt rotation */

pmAxisAngleQuatConvert(PM_Y, pan, &panTilt);

pmQuatAxisAngleMult(panTilt, PM_X, tilt, &panTilt);

Reference Frame Transforms

The transformation from one coordinate frame to another requires translation and
rotation. One representation is the homogeneous transformation, a 4 x 4 matrix
with the rotation matrix in the upper left, the translation vector on the right, and a
row of 3 zeros and a 1 along the bottom. The bottom row can be used to represent
other transformations such as a change in scale, but these are not currently
supported in posemath. The position of a point relative to a new reference frame
can be calculated using normal vector - matrix multiplication as shown below. (A 1
is added to the end of each vector representation for proper matrix multiplication.)

The translation is expressed in the non-rotated frame.

av = T * bv

where

av = [10, 5, 0, 1]T

bv = [10, 7, -5, 1]T

posemath examples http://web.archive.org/web/20120412201014/http://w...

5 of 10 1/24/24, 14:56

The posemath library supports homogeneous transforms but is biased toward a
different representation, the pose, a quaternion and a cartesian translation. It is
often easier to think of the pose as a homogeneous transform.

Example 4

What is the pose for the above transform. Calculate av given bv.

PmCartesian av; /* vector av in frame A */

PmCartesian bv = {10, 7, -5}; /* vector bv in frame B */

PmPose t; /* transform w/ the rotation

expressed as a quaternion */

PmPose t_inv; /* inverse t */

/* represent the rotation as a quaternion */

pmAxisAngleQuatConvert(PM_X, PM_PI / 2, &t.rot);

/* tran in un-rotated frame. One element at a time */

t.tran.x = t.tran.y = 0;

t.tran.z = -7;

posemath examples http://web.archive.org/web/20120412201014/http://w...

6 of 10 1/24/24, 14:56

pmPoseCartMult(t, bv, &av); /* calc av given bv */

/* print t with a quaternion and with a rotation matrix */

pmPrintf("As a quat %p, as a matrix \n%P\n", t, t);

Example 4b

Now the other way: Calculate bv given av.

pmPoseInv(t, &t_inv); /* invert t */

pmPoseCartMult(t, av, &bv); /* calc bv given av */

/* in C++ */

bv = (-t) * av;

Example 5

Given the two frames, Vehicle and Mount as shown in the figure below calculate
the transformation from Vehicle to Mount.

posemath examples http://web.archive.org/web/20120412201014/http://w...

7 of 10 1/24/24, 14:56

PmPose mount; /* transform from Vehicle to Mount */

/* the translation is in the base frame (ie vehicle) */

mount.tran.x = 1.05;

mount.tran.y = 0.2;

mount.tran.z = -0.8;

/* rotate to align X axis */

pmAxisAngleQuatConvert(PM_Z, PM_PI / 2, &mount.rot);

/* rotate to almost align Y & Z axis */

pmQuatAxisAngleMult(mount.rot, PM_X, PM_PI / 2, &mount.rot);

/* rotate for 10 deg offset */

pmQuatAxisAngleMult(mount.rot, PM_X, 10.0 * TO_RAD, &mount.rot);

Multiple Transforms

Multiple transformation are computed using matrix multiplication when using

posemath examples http://web.archive.org/web/20120412201014/http://w...

8 of 10 1/24/24, 14:56

Homogeneous Transformations and by using pose multiplication when using poses.
Either way, the rules are the same. Multiplication is associative,

(T1 * T2) * T3 = T1 * (T2 * T3)

but not commutative (in general)

T1 * T2 != T2 * T1

Manipulate equations by pre- and post-multiplying by inverses. Drawing a simple
sketch showing the frames and relative transforms can help. As you traverse from
one frame to the next, post-multiply by the transform if you are traversing in the
direction of the arrow, and post-multiply by the INVERSE of the transform if you
are traversing in the opposite direction.

Example 6

Given the pose of the vehicle in world frame, the pose of the mount in vehicle
frame, the pose of the camera due to the pan tilt, and the x, y, z measurement of a
rock in camera coordinates (see above examples), what is the position of the rock
in the world frame?

PmPose dr, mount, pt; /* these are set elsewhere */

PmCartesian obst, meas; /* meas is set elsewhere */

PmPose ttt; /* world to camera, temp pose*/

posemath examples http://web.archive.org/web/20120412201014/http://w...

9 of 10 1/24/24, 14:56

pmPosePoseMult(dr, mount, &ttt); /* mount in world */

pmPosePoseMult(ttt, pt, &ttt); /* camera in world */

pmPoseCartMult(ttt, meas, &obst); /* rock in my world */

/* in c++ */

obst = dr * mount * pt * meas; // rock on!

Example 7

A vehicle has two navigation sensors, a dead reckoning unit and a gps unit. The DR
unit measures vehicle orientation and distance traveled since start up (in northing,
easting, and down). The GPS measures the position of the antenna relative to the
UTM zone (in northing, easting, and down). The DR_Base and the UTM_Base have
the same orientation. Calculate the drift, ie, the offset of the DR_Base. In practice,
this drift would be filtered to take out noise in the gps measurement.

PmPose dr;

PmCartesian drift, antenna, gps;

PmCartesian ttt; /* dr_base to antenna vector */

pmPoseCartMult(dr, antenna, &ttt);

pmCartCartSub(gps, ttt, &drift);

/* note we can subtract because there is no rotation between

the two bases, */

posemath examples http://web.archive.org/web/20120412201014/http://w...

10 of 10 1/24/24, 14:56

