
XYZAB_TDR kinematics for LinuxCNC
David Mueller

February 4, 2023

1



1 Introduction
This paper describes how to derive the kinematic model for a 5-axis machine tool in an XYZAB
configuration with dual table rotation. In this example the B axis is the primary and the A axis
is the secondary rotary axis. The primary being independent of the secondary axis. The model
presented here will be named ‘XYZAB-TDR’.

The method used here will be a step by step approach. Starting with a working kinematic model
for a single rotary axis all the required elements will be added to build a complete kinematic model
for the machine.

The final model includes tool-length compensation, compensation for mechanical offsets between
the two rotational axis A and B and compensation for setups where the machine reference point is
not located in the rotation-point of the rotary assembly.

In this document only basic mathematical functions are used so the kinematic models derived can
be used directly in the ‘userkins.comp’ template file provided with the LinuxCNC installation. All
calculations can be done whithout the use of any computer algebra systems, however the use of
computer assistance like ‘sage’ will make the process of matrix multiplication much less error prone.

Note that there are other and potentially more computationally efficient ways to build custom
kinematics using built in libraries like ‘posemath’. Posemath provides many functions for efficient
matrix manipulation and also offers functions for the use of quaternions. However the use of such a
library would require a more indepth understanding of the mathematical theory that is beyond the
scope of this presentation. Furthermore importing a library like ‘posemath’ into the ‘userkins.comp’
template would require substantially more programming skills than using the method applied in
this paper.

A custom kinematic model in LinuxCNC is used to calculate cartesian coordinates from given ma-
chine joint positions (forward kinematics) and also to calculate the required machine joint positions
to reach a given coordinate position (inverse kinematics). In the following description we will use
vectors as mathematical representations of the two positions:

𝑄 =
⎛⎜⎜⎜⎜
⎝

𝑄𝑥
𝑄𝑦
𝑄𝑧

1

⎞⎟⎟⎟⎟
⎠

𝐶𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑃 =
⎛⎜⎜⎜⎜
⎝

𝑃𝑥
𝑃𝑦
𝑃𝑧

1

⎞⎟⎟⎟⎟
⎠

𝐽𝑜𝑖𝑛𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (1)

Note that the fourth row is added to be able to multiply the vectors with a 4x4 transformation
matrix.

2 TCP Kinematic model
For the tool to follow a point on the work piece we need a model that calculates where a given
position on the work piece moves to when the rotary joints are rotated. In our example configuration
the work piece will be mounted on the A rotary table and it is therefore here where we start to
build our forward kinematic model. Note that in matrix multiplication the order is important that
is 𝐴 ⋅ 𝐵 is generally not equal to 𝐵 ⋅ 𝐴.

2



2.1 Rotary A
2.1.1 Forward transformation

We start with the basic rotation around the A axis. In this case our forward transformation matrix
𝑄𝐴𝑃 is equal to a rotation around the x-axis:

𝑄𝐴𝑃 = 𝑅𝑎 (2)

𝑅𝑎 =
⎛⎜⎜⎜⎜
⎝

1 0 0 0
0 Ca −Sa 0
0 Sa Ca 0
0 0 0 1

⎞⎟⎟⎟⎟
⎠

with 𝑆𝑎 = 𝑠𝑖𝑛(𝜃𝑎), 𝐶𝑎 = 𝑐𝑜𝑠(𝜃𝑎) and 𝜃𝑎 being the angle of rotation of joint A

To derive the coordinate position 𝑄(𝑄𝑥, 𝑄𝑦, 𝑄𝑧) we now need to multiply the joint position vector
𝑃(𝑃𝑥, 𝑃𝑦, 𝑃 𝑧) with our forward transformation matrix 𝑄𝐴𝑃 . Note that the input values 𝑃 to our
model need to be on the right hand side of the matrix multiplication.

𝑄 = 𝑄𝐴𝑃 ⋅ 𝑃

𝑄 =
⎛⎜⎜⎜⎜
⎝

Qx
Qy
Qz

1

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

1 0 0 0
0 Ca −Sa 0
0 Sa Ca 0
0 0 0 1

⎞⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜
⎝

Px
Py
Pz

1

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

Px
CaPy − PzSa
CaPz + PySa

1

⎞⎟⎟⎟⎟
⎠

This shows the section of the TCP forward kinematics calculation in the file ‘xyzab_tdr_kins.comp’.
Note that P(px,py,pz) is equal to the joint position (j[0],j[1],j[2],) while 𝑄(𝑄𝑥, 𝑄𝑦, 𝑄𝑧) is output to
the coordinate position (pos->tran.x, pos->tran.y, pos->tran.z). The values ‘ca’, ‘sa’ are calculated
and stored in the respective variables earlier in the component file.

case 1: // ========================= TCP kinematics FORWARD
px = j[0];
py = j[1];
pz = j[2];

pos->tran.x = px;
pos->tran.y = ca*py - sa*pz;
pos->tran.z = ca*pz + sa*py;

pos->a = j[3];
pos->b = j[4];

break;

2.1.2 Inverse transformation

To calculate the joint position 𝑃 from given coordinate positions 𝑄 we need to ‘unrotate’ joint A.
Mathematically this means we need to transpose the rotation part in our transformation matrix.

3



𝑃 𝐴𝑄 = 𝑅𝑇
𝑎 (3)

To derive the joint position 𝑃 we then multiply the coordinate position vector 𝑄 from the right:

𝑃 = 𝑃 𝐴𝑄 ⋅ 𝑄 (4)

𝑃 =
⎛⎜⎜⎜⎜
⎝

Px
Py
Pz

1

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

1 0 0 0
0 Ca Sa 0
0 −Sa Ca 0
0 0 0 1

⎞⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜
⎝

Qx
Qy
Qz

1

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

Qx
CaQy + QzSa
CaQz − QySa

1

⎞⎟⎟⎟⎟
⎠

This shows the section of the TCP inverse kinematics calculation in the file ‘xyzab_tdr_kins.comp’.
Note that 𝑄(𝑞𝑥, 𝑞𝑦, 𝑞𝑧) is equal to the coordinate position (pos->tran.x, pos->tran.y, pos->tran.z)
while 𝑃(𝑃𝑥, 𝑃𝑦, 𝑃 𝑧) is output to the joint position (j[0],j[1],j[2]). The values ‘ca’, ‘sa’ are calculated
and stored in the respective variables earlier in the component file.

case 1: // ========================= TCP kinematics INVERSE
qx = pos->tran.x;
qy = pos->tran.y;
qz = pos->tran.z;

j[0] = qx;

j[1] = ca*qy + qz*sa;

j[2] = ca*qz - qy*sa;

j[3] = pos->a;
j[4] = pos->b;
break;

Testing in LinuxCNC shows a working TCP kinematic for rotations around A

4



2.2 Rotary A and B
2.2.1 Forward transformation

To add the B rotation we expand 𝑄𝐴𝑃 by multiplying the rotation matrix 𝑅𝑏 from the right:

𝑄𝐴𝑃 = 𝑅𝑎 ⋅ 𝑅𝑏 (5)

Note how the transformation matrix 𝑄𝐴𝑃 is constructed from left to right. The first operation
is on the left and the last operation is on the right as we work our way from the work side to the
spindle side of the kinematic chain.

𝑅𝑏 =
⎛⎜⎜⎜⎜
⎝

Cb 0 Sb 0
0 1 0 0

−Sb 0 Cb 0
0 0 0 1

⎞⎟⎟⎟⎟
⎠

5



with 𝑆𝑏 = 𝑠𝑖𝑛(𝜃𝑏), 𝐶𝑏 = 𝑐𝑜𝑠(𝜃𝑏) and 𝜃𝑏 being the angle of rotation of joint B

𝑄𝐴𝑃 =
⎛⎜⎜⎜⎜
⎝

1 0 0 0
0 Ca −Sa 0
0 Sa Ca 0
0 0 0 1

⎞⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜
⎝

Cb 0 Sb 0
0 1 0 0

−Sb 0 Cb 0
0 0 0 1

⎞⎟⎟⎟⎟
⎠

𝑄𝐴𝑃 =
⎛⎜⎜⎜⎜
⎝

Cb 0 Sb 0
SaSb Ca −CbSa 0

−CaSb Sa CaCb 0
0 0 0 1

⎞⎟⎟⎟⎟
⎠

Note how the input data (this here being the forward kinematics the input is the joint position
𝑃 is multiplied with the transformation matrix from the right to get the result (ie the coordinate
position)

𝑄 =
⎛⎜⎜⎜⎜
⎝

Qx
Qy
Qz

1

⎞⎟⎟⎟⎟
⎠

= 𝑄𝐴𝑃 ⋅ 𝑃

𝑄 =
⎛⎜⎜⎜⎜
⎝

Qx
Qy
Qz

1

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

Cb 0 Sb 0
SaSb Ca −CbSa 0

−CaSb Sa CaCb 0
0 0 0 1

⎞⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜
⎝

Px
Py
Pz

1

⎞⎟⎟⎟⎟
⎠

𝑄 =
⎛⎜⎜⎜⎜
⎝

Qx
Qy
Qz

1

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

Px
CaPy − PzSa
CaPz + PySa

1

⎞⎟⎟⎟⎟
⎠

case 1: // ========================= TCP kinematics FORWARD
px = j[0];
py = j[1];
pz = j[2];

pos->tran.x = cb*px + pz*sb;

pos->tran.y = -cb*pz*sa + px*sa*sb + ca*py;

pos->tran.z = ca*cb*pz -ca*px*sb + sa*py;

pos->a = j[3];
pos->b = j[4];

break;

6



2.2.2 Inverse transformation

To calculate the joint position 𝑃 from given coordinate positions 𝑄 we need to first unrotate joint
B and then unrotate joint A. Mathematically we can write this:

𝑃 𝐴𝑄 = 𝑅𝑇
𝑏 ⋅ 𝑅𝑇

𝑎 (6)

Note how the inverse transformation matrix 𝑃 𝐴𝐴 is also constructed from left to right. The first
operation is on the left and the last operation is on the right but here we start from the spindle
side backwards to the work side.

To derive the joint position 𝑃 we then multiply the coordinate position vector 𝑄 from the right:

𝑃 𝐴𝑄 =
⎛⎜⎜⎜⎜
⎝

Cb 0 −Sb 0
0 1 0 0

Sb 0 Cb 0
0 0 0 1

⎞⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜
⎝

1 0 0 0
0 Ca Sa 0
0 −Sa Ca 0
0 0 0 1

⎞⎟⎟⎟⎟
⎠

𝑃 𝐴𝑄 =
⎛⎜⎜⎜⎜
⎝

Cb SaSb −CaSb 0
0 Ca Sa 0

Sb −CbSa CaCb 0
0 0 0 1

⎞⎟⎟⎟⎟
⎠

𝑃 = 𝑃 𝐴𝑄 ⋅ 𝑄 (7)

Note again how the input data (this here being the inverse kinematics the input is the coordinate
position 𝑄 ) is multiplied with the transformation from the right.

𝑃 =
⎛⎜⎜⎜⎜
⎝

Px
Py
Pz

1

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

Cb SaSb −CaSb 0
0 Ca Sa 0

Sb −CbSa CaCb 0
0 0 0 1

⎞⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜
⎝

Qx
Qy
Qz

1

⎞⎟⎟⎟⎟
⎠

𝑃 =
⎛⎜⎜⎜⎜
⎝

Px
Py
Pz

1

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

−CaQzSb + QySaSb + CbQx
CaQy + QzSa

CaCbQz − CbQySa + QxSb
1

⎞⎟⎟⎟⎟
⎠

case 1: // ========================= TCP kinematics INVERSE
qx = pos->tran.x;
qy = pos->tran.y;
qz = pos->tran.z;

j[0] = -ca*qz*sb + qy*sa*sb + cb*qx;

j[1] = ca*qy+ qz*sa;

j[2] = ca*cb*qz - cb*qy*sa + qx*sb;

j[3] = pos->a;

7



j[4] = pos->b;
break;

Testing in LinuxCNC now shows a working TCP kinematic for rotations of both joints A and B

8



2.3 Offsets in the rotary assembly
The rotational axes of a rotary assembly like the A/B type discussed here will always have an
intended or unintented offset from one rotational axis to the other. In our case this is an offset
in the x direction (red indicator) and in the z direction (blue indicator). In the image the yellow
rod indicates the rotational axis of B and the yellow cross at it’s end indicates where the axis A
and axis B intersect when both x- and z-offset are zero this is also called the ‘rotation point’ of
the rotary assembly. We define the values for the offsets in the example image as x-offset = -20
and z-offset = -10. In our kinematic model this represents the situation where, starting from the
rotation point of the rotary assembly, we need to travel 10 in the negative z-direction and 20 in the
negative x-direction to reach the center of the face of the rotary A.

Note that the direction of travel when defining these offsets is arbitrary so in our case the offset
situation in the image could also be defined as +20 in x and +10 in z. However once the definition
is made we must keep it through the entire process of building the kinematic model.

2.3.1 Forward transformation

Because these offsets are located in between the two rotations they also need to be built in between
the rotations in our transformation matrix. It may be helpful to view the offsets as the components

9



of a vector. In our case the vector components would be (-20,0,-10) so the vector would point
from the rotation point to the face of the rotary table A. To build the transformation matrix that
describes these offsets we need to keep in mind if we are moving with or against the offset vector
as we travel from the work to the spindle. In our case we defined the offset vector to point towards
the rotary A so we are travelling in the opposite direction and thus the vector components need to
be entered in the negative.

𝑄𝐴𝑃 = 𝑅𝑎 ⋅ 𝑇𝑜 ⋅ 𝑅𝑏 (8)

𝑇𝑜 =
⎛⎜⎜⎜⎜
⎝

1 0 0 −Dx
0 1 0 0
0 0 1 −Dz
0 0 0 1

⎞⎟⎟⎟⎟
⎠

𝑄𝐴𝑃 =
⎛⎜⎜⎜⎜
⎝

1 0 0 0
0 Ca −Sa 0
0 Sa Ca 0
0 0 0 1

⎞⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜
⎝

1 0 0 −Dx
0 1 0 0
0 0 1 −Dz
0 0 0 1

⎞⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜
⎝

Cb 0 Sb 0
0 1 0 0

−Sb 0 Cb 0
0 0 0 1

⎞⎟⎟⎟⎟
⎠

𝑄𝐴𝑃 =
⎛⎜⎜⎜⎜
⎝

Cb 0 Sb −Dx
SaSb Ca −CbSa DzSa

−CaSb Sa CaCb −CaDz
0 0 0 1

⎞⎟⎟⎟⎟
⎠

𝑄 =
⎛⎜⎜⎜⎜
⎝

Qx
Qy
Qz

1

⎞⎟⎟⎟⎟
⎠

= 𝑄𝐴𝑃 ⋅ 𝑃

𝑄 =
⎛⎜⎜⎜⎜
⎝

Qx
Qy
Qz

1

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

Cb 0 Sb −Dx
SaSb Ca −CbSa DzSa

−CaSb Sa CaCb −CaDz
0 0 0 1

⎞⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜
⎝

Px
Py
Pz

1

⎞⎟⎟⎟⎟
⎠

𝑄 =
⎛⎜⎜⎜⎜
⎝

Qx
Qy
Qz

1

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

CbPx + PzSb − Dx
−CbPzSa + PxSaSb + CaPy + DzSa
CaCbPz − CaPxSb − CaDz + PySa

1

⎞⎟⎟⎟⎟
⎠

case 1: // ========================= TCP kinematics FORWARD
px = j[0];
py = j[1];
pz = j[2];

pos->tran.x = cb*px + pz*sb - dx;

pos->tran.y = -cb*pz*sa + px*sa*sb + ca*py + dz*sa;

pos->tran.z = ca*cb*pz - ca*px*sb - ca*dz + sa*py;

10



pos->a = j[3];
pos->b = j[4];

break;

2.3.2 Inverse transformation

For the inverse transformation we are moving in the opposite direction and need to reverse the
vector translation:

𝑃 𝐴𝑄 = 𝑅𝑇
𝑏 ⋅ 𝑇𝑖𝑜 ⋅ 𝑅𝑇

𝑎 (9)

𝑇𝑖𝑜 =
⎛⎜⎜⎜⎜
⎝

1 0 0 Dx
0 1 0 0
0 0 1 Dz
0 0 0 1

⎞⎟⎟⎟⎟
⎠

𝑃 𝐴𝑄 =
⎛⎜⎜⎜⎜
⎝

Cb 0 −Sb 0
0 1 0 0

Sb 0 Cb 0
0 0 0 1

⎞⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜
⎝

1 0 0 Dx
0 1 0 0
0 0 1 Dz
0 0 0 1

⎞⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜
⎝

1 0 0 0
0 Ca Sa 0
0 −Sa Ca 0
0 0 0 1

⎞⎟⎟⎟⎟
⎠

𝑃 𝐴𝑄 =
⎛⎜⎜⎜⎜
⎝

Cb SaSb −CaSb CbDx − DzSb
0 Ca Sa 0

Sb −CbSa CaCb CbDz + DxSb
0 0 0 1

⎞⎟⎟⎟⎟
⎠

To derive the joint position 𝑃 we then multiply the coordinate position vector 𝑄 from the right:

𝑃 = 𝑃 𝐴𝑄 ⋅ 𝑄 (10)

𝑃 =
⎛⎜⎜⎜⎜
⎝

Px
Py
Pz

1

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

Cb SaSb −CaSb CbDx − DzSb
0 Ca Sa 0

Sb −CbSa CaCb CbDz + DxSb
0 0 0 1

⎞⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜
⎝

Qx
Qy
Qz

1

⎞⎟⎟⎟⎟
⎠

𝑃 =
⎛⎜⎜⎜⎜
⎝

Px
Py
Pz

1

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

−CaQzSb + QySaSb + CbDx + CbQx − DzSb
CaQy + QzSa

CaCbQz − CbQySa + CbDz + DxSb + QxSb
1

⎞⎟⎟⎟⎟
⎠

case 1: // ========================= TCP kinematics INVERSE
qx = pos->tran.x;
qy = pos->tran.y;
qz = pos->tran.z;

j[0] = -ca*qz*sb + qy*sa*sb + cb*dx + cb*qx - dz*sb;

11



j[1] = ca*qy+ qz*sa;

j[2] = ca*cb*qz - cb*qy*sa + cb*dz + dx*sb + qx*sb;

j[3] = pos->a;
j[4] = pos->b;
break;

Testing in LinuxCNC shows a working TCP kinematic for rotations of joints A and B and the
machine reference point has now shifted from the rotation point of the rotary assembly to the face
center of the rotary A.

12



13



2.4 Shifting the reference point back to the rotation point
For the purpose of this example let’s say we would like the machine reference to remain in the
rotation point.

2.4.1 Forward kinematic

We set 𝑃 = (𝑃 𝑥, 𝑃𝑦, 𝑃 𝑧) = (0, 0, 0) and 𝜃𝑎 = 𝜃𝑏 = 0 which gives 𝑆𝑎 = 𝑆𝑏 = 0, 𝐶𝑎 = 𝐶𝑏 = 1 With
these input values our current forward kinematic

𝑄 =
⎛⎜⎜⎜⎜
⎝

Qx
Qy
Qz

1

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

CbPx + PzSb − Dx
−CbPzSa + PxSaSb + CaPy + DzSa
CaCbPz − CaPxSb − CaDz + PySa

1

⎞⎟⎟⎟⎟
⎠

results in 𝑄(−𝐷𝑥, 0, −𝐷𝑧) Which is the reason our machine reference point has been moved to the
face center of the rotary A. So in order to move the machine reference back to the rotation-point of
the rotary assembly we need to add the offset values (𝐷𝑥, 𝐷𝑧) to the result of our forward kinematic
which we can do in the form of a vector translation

𝑇𝑖𝑜 =
⎛⎜⎜⎜⎜
⎝

1 0 0 Dx
0 1 0 0
0 0 1 Dz
0 0 0 1

⎞⎟⎟⎟⎟
⎠

that is multiplied with our forward transformation matrix from the left.

𝑄𝐴𝑃 = 𝑇𝑖𝑜 ⋅ 𝑅𝑎 ⋅ 𝑇𝑜 ⋅ 𝑅𝑏 (11)

𝑄𝐴𝑃 =
⎛⎜⎜⎜⎜
⎝

1 0 0 Dx
0 1 0 0
0 0 1 Dz
0 0 0 1

⎞⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜
⎝

1 0 0 0
0 Ca −Sa 0
0 Sa Ca 0
0 0 0 1

⎞⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜
⎝

1 0 0 −Dx
0 1 0 0
0 0 1 −Dz
0 0 0 1

⎞⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜
⎝

Cb 0 Sb 0
0 1 0 0

−Sb 0 Cb 0
0 0 0 1

⎞⎟⎟⎟⎟
⎠

𝑄𝐴𝑃 =
⎛⎜⎜⎜⎜
⎝

Cb 0 Sb 0
SaSb Ca −CbSa DzSa

−CaSb Sa CaCb −CaDz + Dz
0 0 0 1

⎞⎟⎟⎟⎟
⎠

𝑄 =
⎛⎜⎜⎜⎜
⎝

Qx
Qy
Qz

1

⎞⎟⎟⎟⎟
⎠

= 𝑄𝐴𝑃 ⋅ 𝑃

𝑄 =
⎛⎜⎜⎜⎜
⎝

Qx
Qy
Qz

1

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

Cb 0 Sb 0
SaSb Ca −CbSa DzSa

−CaSb Sa CaCb −CaDz + Dz
0 0 0 1

⎞⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜
⎝

Px
Py
Pz

1

⎞⎟⎟⎟⎟
⎠

14



𝑄 =
⎛⎜⎜⎜⎜
⎝

Qx
Qy
Qz

1

⎞⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜
⎝

CbPx + PzSb
−CbPzSa + PxSaSb + CaPy + DzSa

CaCbPz − CaPxSb − CaDz + PySa + Dz
1

⎞⎟⎟⎟⎟
⎠

case 1: // ========================= TCP kinematics FORWARD
px = j[0];
py = j[1];
pz = j[2];

pos->tran.x = cb*px + pz*sb;

pos->tran.y = -cb*pz*sa + px*sa*sb + ca*py + dz*sa;

pos->tran.z = ca*cb*pz - ca*px*sb - ca*dz + sa*py
+ dz;

pos->a = j[3];
pos->b = j[4];

break;

2.4.2 Inverse transformation

In the inverse transformation

𝑃 = 𝑃 𝐴𝑄 ⋅ 𝑄 = 𝑅𝑇
𝑏 ⋅ 𝑇𝑖𝑜 ⋅ 𝑅𝑇

𝑎 ⋅ 𝑄 (12)

we have to subtract the offset values 𝐷𝑥, 𝐷𝑧 from the input values 𝑄:

𝑄 =
⎛⎜⎜⎜⎜
⎝

−Dx + Qx
Qy

−Dz + Qz
1

⎞⎟⎟⎟⎟
⎠

This is essentially the same as multiplying a translation vector to right side of our transformation
matrix. To keep the math more readable we choose to subtract the values directly from the input.

𝑃 𝐴𝑄 =
⎛⎜⎜⎜⎜
⎝

Cb SaSb −CaSb CbDx − DzSb
0 Ca Sa 0

Sb −CbSa CaCb CbDz + DxSb
0 0 0 1

⎞⎟⎟⎟⎟
⎠

𝑃 =
⎛⎜⎜⎜⎜
⎝

Px
Py
Pz

1

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

Cb SaSb −CaSb CbDx − DzSb
0 Ca Sa 0

Sb −CbSa CaCb CbDz + DxSb
0 0 0 1

⎞⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜
⎝

−Dx + Qx
Qy

−Dz + Qz
1

⎞⎟⎟⎟⎟
⎠

15



𝑃 =
⎛⎜⎜⎜⎜
⎝

Px
Py
Pz

1

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

Ca(Dz − Qz)Sb + QySaSb − Cb(Dx − Qx) + CbDx − DzSb
CaQy − (Dz − Qz)Sa

−CaCb(Dz − Qz) − CbQySa + CbDz − (Dx − Qx)Sb + DxSb
1

⎞⎟⎟⎟⎟
⎠

Note that in the kinematic component 𝐷𝑥 is subtracted from the coordinate value pos->tran.x in
the line qx = pos->tran.x - dx; and 𝐷𝑧 is subtracted from the coordinate value pos->tran.z in the
line qz = pos->tran.z - dz;

Also note that (𝐷𝑧 − 𝑄𝑧) = −(𝑄𝑧 − 𝐷𝑧)

case 1: // ========================= TCP kinematics INVERSE
qx = pos->tran.x - dx;
qy = pos->tran.y;
qz = pos->tran.z - dz;

j[0] = -ca*qz*sb + qy*sa*sb + cb*dx + cb*qx - dz*sb;

j[1] = ca*qy+ qz*sa;

j[2] = ca*cb*qz - cb*qy*sa + cb*dz + dx*sb + qx*sb;

j[3] = pos->a;
j[4] = pos->b;
break;

Testing in LinuxCNC shows the machine reference point has now been shifted back to rotation
point of the rotary assembly.

16



17



2.5 Tool length offset (TLO)
Tool-length compensation is applied automatically in LinuxCNC by subtracting the tool-length
value Dt stored in the tool table from the the z-axis coordinate position while the joint position
value remains unchanged. In it’s current form our forward kinematic model assumes that the
joint position 𝑃 is identical to the tool position and uses the joint position value 𝑃(𝑃𝑥, 𝑃𝑦, 𝑃𝑧)
to calculate the coordinate value 𝑄(𝑄𝑥, 𝑄𝑦, 𝑄𝑧). Hence our kinematic model does not see a tool
position change when TLO is activated by G43.

2.5.1 Forward kinematics

To illustrate the situation we assume that the machine coordinate system origin (ie G53 X0Y0Z0)
coincides with the rotation point of our rotary assembly. Further assuming that a tool could be
positioned in this location we would expect that without any tool-length compensation (G49) a
tool positioned here (G0 X0Y0Z0) would be unaffected by any rotation of either A or B and that
is indeed the case:

18



Let us consider this with our forward kinematic:

𝑄 =
⎛⎜⎜⎜⎜
⎝

Qx
Qy
Qz

1

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

CbPx + PzSb
−CbPzSa + PxSaSb + CaPy + DzSa

CaCbPz − CaPxSb − CaDz + PySa + Dz
1

⎞⎟⎟⎟⎟
⎠

It is easy to see that for 𝐷𝑥 = 𝐷𝑧 = 0 and 𝑃(0, 0, 0) the result is indeed 𝑄(0, 0, 0) and this is what
we expected.

However if we apply tool-length compensation (ie G43) and we move the tool to G0 X0Y0Z0 so
the tool center point (TCP) is again positioned at the rotation-point we see that the input to our

19



forward kinematic (ie the joint position) is not at 𝑃(0, 0, 0) anymore:

Due to the way TLO is handled by LinuxCNC our joint-position is now P(0,0,Dt) while the DRO
reads Z: 0.000. To solve this problem we need to subtract the tool-offset value Dt from the z
joint position before feeding it into the forward kinematic. In this way our joint-position becomes
𝑃(0, 0, 0) which will then give us the desired result of 𝑄(0, 0, 0).

𝑃 =
⎛⎜⎜⎜⎜
⎝

Px
Py

−Dt + Pz
1

⎞⎟⎟⎟⎟
⎠

20



Now however there is a new problem in that the DRO in LinuxCNC will show a z-axis position
value equivalent to -Dt.

This is because LinuxCNC automatically subtracts the TLO value from the value of pos->tran.z
which is the result of our forward kinematic. This can be fixed by adding Dt back to the result of
our forward kinematic calculation which we can do by creating a vector translation:

𝑇 𝑡 =
⎛⎜⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 Dt
0 0 0 1

⎞⎟⎟⎟⎟
⎠

21



and multiply that to the left of our transformation matrix:

𝑄𝐴𝑃 = 𝑇𝑡 ⋅ 𝑇𝑖𝑜 ⋅ 𝑅𝑎 ⋅ 𝑇𝑜 ⋅ 𝑅𝑏 (13)

𝑄𝐴𝑃 =
⎛⎜⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 Dt
0 0 0 1

⎞⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜
⎝

1 0 0 Dx
0 1 0 0
0 0 1 Dz
0 0 0 1

⎞⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜
⎝

1 0 0 0
0 Ca −Sa 0
0 Sa Ca 0
0 0 0 1

⎞⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜
⎝

1 0 0 −Dx
0 1 0 0
0 0 1 −Dz
0 0 0 1

⎞⎟⎟⎟⎟
⎠

⋅

⎛⎜⎜⎜⎜
⎝

Cb 0 Sb 0
0 1 0 0

−Sb 0 Cb 0
0 0 0 1

⎞⎟⎟⎟⎟
⎠

𝑄𝐴𝑃 =
⎛⎜⎜⎜⎜
⎝

Cb 0 Sb 0
SaSb Ca −CbSa DzSa

−CaSb Sa CaCb −CaDz + Dt + Dz
0 0 0 1

⎞⎟⎟⎟⎟
⎠

𝑄 =
⎛⎜⎜⎜⎜
⎝

Qx
Qy
Qz

1

⎞⎟⎟⎟⎟
⎠

= 𝑄𝐴𝑃 ⋅ 𝑃

𝑄 =
⎛⎜⎜⎜⎜
⎝

Qx
Qy
Qz

1

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

Cb 0 Sb Drpx
SaSb Ca −CbSa DzSa + Drpy

−CaSb Sa CaCb −CaDz + Drpz + Dt + Dz
0 0 0 1

⎞⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜
⎝

−Drpx + Px
−Drpy + Py

−Drpz − Dt + Pz
1

⎞⎟⎟⎟⎟
⎠

𝑄 =
⎛⎜⎜⎜⎜
⎝

−Cb(Drpx − Px) − (Drpz + Dt − Pz)Sb + Drpx
Cb(Drpz + Dt − Pz)Sa − (Drpx − Px)SaSb − Ca(Drpy − Py) + DzSa + Drpy

−CaCb(Drpz + Dt − Pz) + Ca(Drpx − Px)Sb − CaDz − (Drpy − Py)Sa + Drpz + Dt + Dz
1

⎞⎟⎟⎟⎟
⎠

Note that in the kinematic component 𝐷𝑡 is subtracted from the joint value j[2] in the line * pz =
j[2]- dt;*

case 1: // ========================= TCP kinematics FORWARD
px = j[0];
py = j[1];
pz = j[2]- dt;

pos->tran.x = cb*px + pz*sb;

pos->tran.y = -cb*pz*sa + px*sa*sb + ca*py + dz*sa;

pos->tran.z = ca*cb*pz - ca*px*sb - ca*dz + sa*py
+ dz + dt;

pos->a = j[3];

22



pos->b = j[4];

break;

2.5.2 Inverse transformation

For the inverse transformation to match the new forward transformation we need to subtract 𝐷𝑡
from the coordinate position 𝑄 and add it back to the result which we do by multiplying the
translation by the vector 𝐷𝑡 from the left:

𝑃 = 𝑃 𝐴𝑄 ⋅ 𝑄 = 𝑇𝑡 ⋅ 𝑅𝑇
𝑏 ⋅ 𝑇𝑖𝑜 ⋅ 𝑅𝑇

𝑎 ⋅ 𝑄 (14)

𝑄 =
⎛⎜⎜⎜⎜
⎝

−Dx + Qx
Qy

−Dt − Dz + Qz
1

⎞⎟⎟⎟⎟
⎠

𝑃 𝐴𝑄 =
⎛⎜⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 Dt
0 0 0 1

⎞⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜
⎝

Cb 0 −Sb 0
0 1 0 0

Sb 0 Cb 0
0 0 0 1

⎞⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜
⎝

1 0 0 Dx
0 1 0 0
0 0 1 Dz
0 0 0 1

⎞⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜
⎝

1 0 0 0
0 Ca Sa 0
0 −Sa Ca 0
0 0 0 1

⎞⎟⎟⎟⎟
⎠

𝑃 𝐴𝑄 =
⎛⎜⎜⎜⎜
⎝

Cb SaSb −CaSb CbDx − DzSb
0 Ca Sa 0

Sb −CbSa CaCb CbDz + DxSb + Dt
0 0 0 1

⎞⎟⎟⎟⎟
⎠

𝑃 =
⎛⎜⎜⎜⎜
⎝

Px
Py
Pz

1

⎞⎟⎟⎟⎟
⎠

= 𝑃 𝐴𝑄 ⋅ 𝑄

𝑃 =
⎛⎜⎜⎜⎜
⎝

Px
Py
Pz

1

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

Cb SaSb −CaSb CbDx − DzSb
0 Ca Sa 0

Sb −CbSa CaCb CbDz + DxSb + Dt
0 0 0 1

⎞⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜
⎝

−Dx + Qx
Qy

−Dt − Dz + Qz
1

⎞⎟⎟⎟⎟
⎠

𝑃 =
⎛⎜⎜⎜⎜
⎝

Ca(Dt + Dz − Qz)Sb + QySaSb − Cb(Dx − Qx) + CbDx − DzSb
CaQy − (Dt + Dz − Qz)Sa

−CaCb(Dt + Dz − Qz) − CbQySa + CbDz − (Dx − Qx)Sb + DxSb + Dt
1

⎞⎟⎟⎟⎟
⎠

Note that in the kinematic component 𝐷𝑡 is subtracted from the coordinate value pos->tran.z in
the line qz = pos->tran.z - dz - dt;

case 1: // ========================= TCP kinematics INVERSE
qx = pos->tran.x - dx;
qy = pos->tran.y;
qz = pos->tran.z - dz - dt;

23



j[0] = -ca*qz*sb + qy*sa*sb + cb*dx + cb*qx - dz*sb;

j[1] = ca*qy+ qz*sa;

j[2] = ca*cb*qz - cb*qy*sa + cb*dz + dx*sb + qx*sb
+ dt;

j[3] = pos->a;
j[4] = pos->b;
break;

Now everything looks correct in the DRO.

24



If our machine is setup so that the machine reference point coincides with the rotation point of our
rotary-assembly then our forward kinematic is complete. Otherwise one more step is necessary to
derive a correct kinematic model.

2.6 Position offset of the rotary assembly to the machine reference point
Up to this point we have assumed that the machine reference point coincides with the rotation point
of our rotary-assembly or in case of applied geometric offsets (𝐷𝑥, 𝐷𝑧) maybe the center of the face
of our secondary rotary table A. For such a case our forward kinematic is complete. However, if
the machine at hand is setup in a way where there is an offset between the machine reference point
and the rotary-assembly then this will need to be taken into account in the kinematic model. What
does such an offset mean for our forward kinematic?

2.6.1 Forward kinematic

Let us assume that we have a setup with no TLO (𝑑𝑡 = 0), no geometric offset (𝐷𝑧 = 𝐷𝑥 = 0) and
no offset of the rotation-point. A tool positioned at the rotation-point would have a joint-position
of 𝑃(0, 0, 0) and that would give the expected resulting coordinate position of 𝑄(0, 0, 0). If we now
assume that the rotation-point of our rotary-assembly is offset from the machine reference point
by (𝑟𝑝𝑥, 𝑟𝑝𝑦, 𝑟𝑝𝑧) then our joint-position would be equal to the offset 𝑃(𝑟𝑝𝑥, 𝑟𝑝𝑦, 𝑟𝑝𝑧) which would
clearly not give us the required result of Q(0,0,0). So we need to subtract the offset (𝑟𝑝𝑥, 𝑟𝑝𝑦, 𝑟𝑝𝑧)
from the joint-position 𝑃 = (𝑃𝑥 − 𝑟𝑝𝑥, 𝑃𝑦 − 𝑟𝑝𝑦, 𝑃 𝑧 − 𝑟𝑝𝑧) or in other words we need to translate
the joint-position vector in the opposite direction along the offset vector.

𝑃 =
⎛⎜⎜⎜⎜
⎝

−Drpx + Px
−Drpy + Py

−Drpz − Dt + Pz
1

⎞⎟⎟⎟⎟
⎠

However some more consideration is needed for now a joint position of 𝑃(𝑟𝑝𝑥, 𝑟𝑝𝑦, 𝑟𝑝𝑧) will result in
a coordinate position of 𝑄(0, 0, 0) which is of course not the value we can hand back to LinuxCNC
because if the rotation point is offset from machine zero then the coordinate position would be
𝑄(𝑟𝑝𝑥, 𝑟𝑝𝑦, 𝑟𝑝𝑧). So to be consistent we need to add the offset values back to the results of our
calculations which we do again by multiplying a vector translation to the left of our forward
kinematic:

𝑄𝐴𝑃 = 𝑇𝑟𝑝 ⋅ 𝑇𝑡 ⋅ 𝑇𝑖𝑜 ⋅ 𝑅𝑎 ⋅ 𝑇𝑜 ⋅ 𝑅𝑏 (15)

𝑇 𝑟𝑝 =
⎛⎜⎜⎜⎜
⎝

1 0 0 Drpx
0 1 0 Drpy
0 0 1 Drpz
0 0 0 1

⎞⎟⎟⎟⎟
⎠

𝑄𝐴𝑃 =
⎛⎜⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 Dt
0 0 0 1

⎞⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜
⎝

1 0 0 Dx
0 1 0 0
0 0 1 Dz
0 0 0 1

⎞⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜
⎝

1 0 0 0
0 Ca −Sa 0
0 Sa Ca 0
0 0 0 1

⎞⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜
⎝

1 0 0 −Dx
0 1 0 0
0 0 1 −Dz
0 0 0 1

⎞⎟⎟⎟⎟
⎠

⋅

25



⎛⎜⎜⎜⎜
⎝

Cb 0 Sb 0
0 1 0 0

−Sb 0 Cb 0
0 0 0 1

⎞⎟⎟⎟⎟
⎠

𝑄𝐴𝑃 =
⎛⎜⎜⎜⎜
⎝

Cb 0 Sb Drpx
SaSb Ca −CbSa DzSa + Drpy

−CaSb Sa CaCb −CaDz + Drpz + Dt + Dz
0 0 0 1

⎞⎟⎟⎟⎟
⎠

𝑄 =
⎛⎜⎜⎜⎜
⎝

Qx
Qy
Qz

1

⎞⎟⎟⎟⎟
⎠

= 𝑄𝐴𝑃 ⋅ 𝑃

𝑄 =
⎛⎜⎜⎜⎜
⎝

Qx
Qy
Qz

1

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

Cb 0 Sb Drpx
SaSb Ca −CbSa DzSa + Drpy

−CaSb Sa CaCb −CaDz + Drpz + Dt + Dz
0 0 0 1

⎞⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜
⎝

−Drpx + Px
−Drpy + Py

−Drpz − Dt + Pz
1

⎞⎟⎟⎟⎟
⎠

𝑄 =
⎛⎜⎜⎜⎜
⎝

−Cb(Drpx − Px) − (Drpz + Dt − Pz)Sb + Drpx
Cb(Drpz + Dt − Pz)Sa − (Drpx − Px)SaSb − Ca(Drpy − Py) + DzSa + Drpy

−CaCb(Drpz + Dt − Pz) + Ca(Drpx − Px)Sb − CaDz − (Drpy − Py)Sa + Drpz + Dt + Dz
1

⎞⎟⎟⎟⎟
⎠

Note that in the kinematic component 𝐷𝑟𝑝(𝑥, 𝑦, 𝑧) is named *(x,y,z)_rot_point* and subtracted
from the respective joint values in the lines px = j[0] - x_rot_point; py = j[1] - y_rot_point; pz
= j[2] - z_rot_point - dt;

case 1: // ========================= TCP kinematics FORWARD
px = j[0] - x_rot_point;
py = j[1] - y_rot_point;
pz = j[2] - z_rot_point - dt;

pos->tran.x = cb*px + sb*pz
+ x_rot_point;

pos->tran.y = sa*sb*px + ca*py - cb*sa*pz + sa*dz
+ y_rot_point;

pos->tran.z = - ca*sb*px + sa*py + ca*cb*pz - ca*dz
+ z_rot_point + dz + dt;

pos->a = j[3];
pos->b = j[4];
pos->c = j[5];
break;

26



2.6.2 Inverse transformation

For the inverse transformation to match the new forward transformation we need mirror the modifi-
cations in the forward kinematics. That means to subtract 𝐷𝑟𝑝(𝑥, 𝑦, 𝑧) from the coordinate position
𝑄

𝑄 =
⎛⎜⎜⎜⎜
⎝

−Drpx − Dx + Qx
−Drpx + Qy

−Drpx − Dz + Qz
1

⎞⎟⎟⎟⎟
⎠

and add it back to the result which we do by multiplying the translation vector 𝐷𝑟𝑝(𝑥, 𝑦, 𝑧) to the
inverse transformation from the left:

𝑃 𝐴𝑄 = 𝑇𝑟𝑝 ⋅ 𝑇𝑡 ⋅ 𝑅𝑇
𝑏 ⋅ 𝑇−𝑜 ⋅ 𝑅𝑇

𝑎 ⋅ 𝑄 (16)

𝑃 𝐴𝑄 =
⎛⎜⎜⎜⎜
⎝

1 0 0 Drpx
0 1 0 Drpy
0 0 1 Drpz
0 0 0 1

⎞⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 Dt
0 0 0 1

⎞⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜
⎝

Cb 0 −Sb 0
0 1 0 0

Sb 0 Cb 0
0 0 0 1

⎞⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜
⎝

1 0 0 Dx
0 1 0 0
0 0 1 Dz
0 0 0 1

⎞⎟⎟⎟⎟
⎠

⋅

⎛⎜⎜⎜⎜
⎝

1 0 0 0
0 Ca Sa 0
0 −Sa Ca 0
0 0 0 1

⎞⎟⎟⎟⎟
⎠

𝑃 𝐴𝑄 =
⎛⎜⎜⎜⎜
⎝

Cb SaSb −CaSb CbDx − DzSb + Drpx
0 Ca Sa Drpy

Sb −CbSa CaCb CbDz + DxSb + Drpz + Dt
0 0 0 1

⎞⎟⎟⎟⎟
⎠

𝑃 = 𝑃 𝐴𝑄 ⋅ 𝑄 (17)

𝑃 =
⎛⎜⎜⎜⎜
⎝

Px
Py
Pz

1

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

Cb SaSb −CaSb CbDx − DzSb + Drpx
0 Ca Sa Drpy

Sb −CbSa CaCb CbDz + DxSb + Drpz + Dt
0 0 0 1

⎞⎟⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜⎜
⎝

−Drpx − Dx + Qx
−Drpx + Qy

−Drpx − Dz + Qz
1

⎞⎟⎟⎟⎟
⎠

𝑃 =
⎛⎜⎜⎜⎜
⎝

Ca(Drpx + Dz − Qz)Sb − (Drpx − Qy)SaSb − Cb(Drpx + Dx − Qx) + CbDx − DzSb + Drpx
−Ca(Drpx − Qy) − (Drpx + Dz − Qz)Sa + Drpy

−CaCb(Drpx + Dz − Qz) + Cb(Drpx − Qy)Sa + CbDz − (Drpx + Dx − Qx)Sb + DxSb + Drpz + Dt
1

⎞⎟⎟⎟⎟
⎠

Note that in the kinematic component 𝐷𝑟𝑝(𝑥, 𝑦, 𝑧) is named *(x,y,z)_rot_point* and subtracted
from the respective coordinate values in the lines qx = pos->tran.x - x_rot_point - dx; qy =
pos->tran.y - y_rot_point; qz = pos->tran.z - z_rot_point - dz - dt;

case 1: // ========================= TCP kinematics INVERSE ======================
qx = pos->tran.x - x_rot_point - dx;
qy = pos->tran.y - y_rot_point;
qz = pos->tran.z - z_rot_point - dz - dt;

27



j[0] = cb*qx + sa*sb*qy - ca*sb*qz + cb*dx - sb*dz
+ x_rot_point;

j[1] = ca*qy + sa*qz
+ y_rot_point;

j[2] = sb*qx - sa*cb*qy + ca*cb*qz + sb*dx + cb*dz
+ z_rot_point + dt;

j[3] = pos->a;
j[4] = pos->b;
break;

This completes the kinematic model.

28


	Introduction
	TCP Kinematic model
	Rotary A
	Forward transformation
	Inverse transformation

	Rotary A and B
	Forward transformation
	Inverse transformation

	Offsets in the rotary assembly
	Forward transformation
	Inverse transformation

	Shifting the reference point back to the rotation point
	Forward kinematic
	Inverse transformation

	Tool length offset (TLO)
	Forward kinematics
	Inverse transformation

	Position offset of the rotary assembly to the machine reference point
	Forward kinematic
	Inverse transformation



