
DYN2 Series
AC Servo Drive Specification

TYPE A - GENERAL PURPOSE PULSE / ANALOG / RS232
TYPE B - MODBUS
TYPE C - CAN

Manual Code
Revision

Hardware Version
Firmware Version

: AH10
: AH10

: DYN2MS-14F-0917A18
: A1.8

This manual must be kept available for the user
Copyright © 2017 DMM Technology Corp. D37

DYN232M
D Y N A C S E R V O S Y S T E M - R S 2 3 2 M O T I O N

TM

TMDTPU
P O S I T I O N I N G

adaptive TUNING II

2
DYN2MS-02F-0116A17

■ Safety Notice ■

The user or operator should read through this manual completely before installation, testing, operation, or
inspection of the equipment. The DYN2 series AC Servo Drive should be operated under correct circum-
stances and conditions. Bodily harm or damage to equipment and system may result if specifications
outlined in this document are not followed. Take extra precaution when the warning convention is used.

■ Notations Used ■

All specification and units of measurement used in the manual are in METRIC:
 Mass: Kilogram [kg]
 Length: Millimeter [mm]
 Time: Seconds [s]
 Temperature: Celsius [°C]

! WARNING

■ Standards Compliance ■

CE

Machinery Directive 2006/42/EC
Low Voltage Directive 2014/35/EU
Electromagnetic Compatibility 2014/30/EU

EN12100:2010
EN 60034-1:2010; EN 60204-1:2006/AC: 2010
EN 61000-6-1: 2007;
EN 61000-6-2:2005/AC: 2005

3
DYN2MS-02F-0116A17

Product Manual Preface

The user or operator should read through this manual completely before installation, testing, operation,
or inspection of the equipment. The DYN2 series AC Servo Drive should be operated under correct
circumstances and conditions. Bodily harm or damage to equipment and system may result if spec-
ifications outlined in this document are not followed. Take extra caution at details when the warning
convention is used.

This manual is available on the DMM Technology Corp. website. A physical copy or reference to the
on-line availability must be kept convenient to the servo drive user or operator for references.
Contact DMM Technology Corp. if the user or operator has any questions or concerns regarding use.

The DYN2 AC Servo Drive is not designed or certified to implement safety into a system and should
not be used in applications where the servo drive maintains safety to personnel or machine.

To reflect improvements, additions, revisions, changes or corrections made to the product or manual,
this document is updated accordingly and divided into revisions to reflect each version.

4
DYN2MS-02F-0116A17

Manual Contents

■ Safety Notice ■ 2
■ Notations Used ■ 2
■ Standards Compliance ■ 2

Product Manual Preface 3
Manual Contents 4

A.1 Introduction 5
A.2 Name Plate 5
A.3 Servo Drive Model Number 6

1 GENERAL SPECIFICATION 7
1.1 Drive Overall Specification 7
1.2 Control Block Diagram 8
1.3 Encoder Specification 8

2 CONNECTIONS AND WIRING 9
2.1 DYN2 Servo Drive Body Layout 9
2.2 Connector and Signal Specification 10
2.3 JP3 Main I/O Details 12
2.4 JP3 I/O Connection Circuit 16
2.5 Main Power Supply Requirements 20

3 START UP 22
3.1 Mounting and Installation 22
3.2 Timing Chart 23
3.3 DMMDRV Software Communication 25
3.3 DMMDRV Software Communication 26

4 OPERATION 27
4.1 Position Servo Mode 27
4.2 Speed Servo Mode 31
4.3 Torque Servo Mode 33
4.4 RS232 Command Input Mode 34
4.5 Absolute Zero Position Index Output (ZRI) 34

5 PARAMETERS AND TUNING 35
5.1 Parameters Outline 35
5.2 Servo Drive Gain Tuning 37

6 MAINTENANCE 39
6.1 Alarm Specifications 39
6.2 - Drive Maintenance 40

7 RS232 Communication Protocol 41
7.1 Interface and Format 43
7.2 Packet Definition 47
7.3 Drive Configuration and Status Register 48
7.4 Common Function Details 50
7.5 Dynamic Target Position Update (DTPU) 52
7.6 Packet Structure Examples 53
7.7 Application Examples 57
7.8 RS485 Serial Network 58
7.9A Appendix : C++ Code for Serial Communication Protocol 65

8 Modbus RTU (RS485) Communication 66
9 CAN Communication 67
APPENDIX A - Servo Drive Dimensions 68
APPENDIX B - Operation Examples 69
Warranty and Liability 70
Product and Manual Disclaimer 71

5
DYN2MS-02F-0116A17

A.1 Introduction

This manual documents all features and specifications for the DYN2 series AC Servo Drive Type A -
General Purpose Pulse/Analog. The servo drive features standard pulse train and analog command input
modes compatible with universal motion controllers, PLC’s or CNC controllers. Control modes include po-
sition, speed or torque servo mode with standard signal connections and interfacing for seamless integra-
tion into any system. A high resolution 16-bit (65,536pulse/rev) encoder combined with outstanding 10ms
instantaneous position response optimizes performance in high-demand applications.

Gain adjustment is simplified with 3 parameter tuning for fast and easy adjustments while maintaining crit-
ical application and response flexibility. All testing and tuning is done through a RS232 or USB interface
with a host PC running DMMDRV GUI software for fast and easy set up. Drive status is internally moni-
tored by 22 parameters for consistent and reliable performance.

Standard servo motor and encoder/motor power cable pair options available. Measuring only 32mm [W] x
85mm [H] x 75mm [D], the DYN2 AC Servo drive can power up to 0.75kW (7.1Nm) capacity. The perfect
servo drive for any small to medium capacity application.

A.2 Name Plate

Model Number
Input / Output Specifications

Protection
Country of Origin
Lot / Serial Number

Hardware / Software Version

Note the name plate is region specific and may vary between each region model.

6
DYN2MS-02F-0116A17

A.3 Servo Drive Model Number

D Y N 2 - T L A 6 S - 0 0

DMM Servo Drive Series

DYN2 AC Servo Drive
Low Voltage DC Input

Voltage Class

T 60V

Command Type

A Pulse / Analog / RS232 (DYN232M Protocol)

B Modbus RTU (RS485)

C CAN (DMM Proprietary CAN Protocol)

Encoder

4 14-bit

6 16-bit

Model Type

S Standard

** Custom

Motor Capacity

1 50W - 200W

L 400W - 750W

7
DYN2MS-02F-0116A17

1.1 Drive Overall Specification

1 GENERAL SPECIFICATION

Data Specification

Input
Rated Voltage 60VDC ± 10%
Permissible Input Voltage 24VDC ~ 75VDC
Rated Current 16A

Output

Rated Voltage Peak. +75VAC
Between any two motor phase

Rated Current
[L] Capacity Model: Peak. 20A
[1] Capacity Model: Peak 10A
From any single motor phase

Motor Capacity 50W ~ 750W

Drive Interface Power
Supply (JP2 Pin. 12)

Voltage 5VDC +/-%5
Max. Current Draw 50mA

Control Method SVPWM
Dynamic Brake Integrated
Encoder Feedback 14/16-bit Single-Turn Absolute

Protection Functions Current, Voltage, Temperature, Over Power, Posi-
tion Lost Follow

Position Servo

Command Reference Pulse*1 Pulse+Sign, A/B Phase Quadrature 90° Phase
Differential, CW+CCW

Max. Input Frequency 500kHz

Input Voltage 5VDC ± %5 (Higher voltage available as option)
Over drive photocoupler diode

Positioning Feedback Z Index Pulse*2

Speed Servo

Speed Control Range 0:5000

Input Reference Voltage -10VDC ~ +10VDC ± %5
3,000rpm at ± 5VDC

Max Input Voltage ± 12VDC

Torque Servo
Input Reference Voltage -10VDC ~ +10VDC ± %5
Max Input Voltage ± 12VDC

Environment

Protection IP10
Operation Temperature 0~55°C
Storage Temperature -20 ~ 65°C
Max. Operation Humidity 95RH% (no dew)
Max. Storage Humidity 95RH% (no dew)

Mass 0.2kg

1. CW+CCW command format available as option.
2. See section 4.5 for Z index pulse details

8
DYN2MS-02F-0116A17

1.2 Control Block Diagram

1.3 Encoder Specification

Main Power
Input

RS232
Serial Port

JP2

+

-

Switching
Power Supply

+5VDC+15VDC

Main Control
Inverter Circuit

Isolated Gate Control

CPU

Current
Sensor
Current
Sensor

A

B

C

LED S1

Isolated I/O Interface

JP4

JP3
Encoder
Feedback

A/D Analog Input
Voltage Protection

DYN2 AC Servo Drive

■ Model

Model Number Type Resolution Data Type Interface Type Measurement Voltage Status

ABS-14-00 Absolute 14bit [16,384ppr] 6-Wire Serial Differential Driver/
Receiver Magnetic +5VDC A

ABS-16-00 Absolute 16bit [65,536ppr] 4-Wire Serial Differential Driver/
Receiver Magnetic +5VDC A

9
DYN2MS-02F-0116A17

2 CONNECTIONS AND WIRING

2.1 DYN2 Servo Drive Body Layout

Assem_obcover_FP01001
WEIGHT:

A3

SHEET 1 OF 1SCALE:1:2

DWG NO.

TITLE:

REVISIONDO NOT SCALE DRAWING

MATERIAL:

DATESIGNATURENAME

DEBUR AND
BREAK SHARP
EDGES

FINISH:UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

Q.A

MFG

APPV'D

CHK'D

DRAWN

■ JP1
Power Supply Input

■ JP5
Servo Motor Power

■ JP3
I/O Port

■ JP2
RS232 Port to PC

■ S1 Drive Status LED
[Green LED]

■ JP4
Encoder Feedback Port

(1) Drive Body Grounding Terminal
[M3 x 5mm Max.]
*Located on left side of body

(1)

■ Pin Layout

JP1

+

-

JP2

+5V

TxD

RxD

JP3

12
11
10
9
8
7
6
5
4
3
2
1

JP4

+5V

S+

S-

Gnd

JP5

C

B

A

NC

NC

NC

Gnd

DO NOT reverse JP1 DC
input polarity. Reversing
polarity will permanently
damage servo drive.

Top side of servo drive

Bottom side of servo drive

10
DYN2MS-02F-0116A17

2.2 Connector and Signal Specification

▐ JP1 - Power Supply Input
Connector Type: 5.00mm Pitch Terminal Block
Drive Header: Phoenix MSTBA 2,5/ 2-G
Plug Connector: Phoenix MSTB 2,5/ 2-ST
Recommended Wire Gauge: 0.8mm2 (AWG18)

▐ JP2 RS232 Port to PC
Connector Type: 2.54mm Pitch Rectangular
Drive Header: Molex 70553-0041
Plug Connector: Molex 50-57-9407
Recommended Wire Gauge: 0.3mm2 (AWG22)
Signal Layout:

Type A
Pin 1: GND
Pin 2~4: NC
Pin 5: RS232 signal input, RxD, TTL/CMOS level.
Pin 6: RS232 signal output, TxD, TTL/CMOS level.
Pin 7: +5(V) output, <10(mA), generated in board.

Type B (Modbus RS485)
Pin 1: GND
Pin 2: RS485+
Pin 3: RS485-
Pin 4: NC
Pin 5: RS232 RxD
Pin 6: RS232 TxD
Pin 7: +5V

Type C (CAN)
Pin 1: GND
Pin 2: CANH
Pin 3: CANL
Pin 4: NC
Pin 5: RS232 RxD
Pin 6: RS232 TxD
Pin 7: +5V

In order to connect JP2 with PC’s RS232 port, an intermediate cable with level shift buffer is necessary. Intermedi-
ate cable shipped with drive tuning cable [Model No. CA-MRS232-6].

▐ JP3 I/O Port - Position Command Input
Connector Type: 3.5mm Pitch Terminal Block
Drive Header: Phoenix MC 1,5/12-G-3,5
Plug Connector: Phoenix MC 1,5/12-ST-3,5
Recommended Wire Gauge: 0.6mm2 (20AWG)
Signal Layout:
 Pin 1: GND (Bottom side of drive)
 Pin 2: Analog Command Reference ±10VDC
 Pin 3: DIR-, B-, CCW- Pulse Reference
 Pin 4: DIR+, B+, CCW+ Pulse Reference
 Pin 5: STEP-, A-, CW- Pulse Reference
 Pin 6: STEP+, A+, CW+ Pulse Reference
 Pin 7: Signal Common for Pin. 8, 9, 10, 11.
 Pin 8: Alarm Output
 Pin 9: OnPosition Output
 Pin 10: Absolute Zero Position Index Output
 Pin 11: Drive Disable Input
 Pin 12: Drive Internal +5VDC Supply (Top side of drive nearest to JP5)

11
DYN2MS-02F-0116A17

▐ JP4 Encoder Feedback Port
Connector Type: 2.54mm Pitch Rectangular
Drive Header: Molex 70553-0038
Plug Connector: Molex 50-57-9404
Recommended Wire Gauge: 0.3mm2 (AWG22)
Signal Layout:
 Pin 1: +5VDC Supply
 Pin 2: S+
 Pin 3: S-
 Pin 4: Gnd

▐ JP5 Servo Motor Power
Connector Type: 5.00mm Pitch Terminal Block
Drive Header: Phoenix MSTBA 2,5/ 3-G
Plug Connector: Phoenix MSTB 2,5/ 3-ST
Recommended Wire Gauge: 0.8mm2 (AWG18)
Signal Layout:
 Pin 1: A Phase
 Pin 2: B Phase
 Pin 3: C Phase

Motor frame should be grounded through Drive Body Grounding Terminal [M3] located on heat sink side.
Crimp an M3 terminal lug onto the servo motor frame wire (Yellow/Green) and attach the lug to the drive
body grounding terminal. Do not use a screw longer than 5mm.

2.2 Connector and Signal Specification

12
DYN2MS-02F-0116A17

2.3 JP3 Main I/O Details

■ Terminal Layout

WARNING!
● Note the directionality of the JP3 connector and pins before making connections. Pin1
is located nearest to the bottom of the servo drive. Pin12 is located nearest terminal JP5
(Servo Motor Power).

DYN2 AC Servo Drive

I/O
 C

om
m

an
d

In
te

rfa
ce

DYN2 Drive Internal +5VDC

270Ω

A/D

12+5VDC

11ENA

10ZRI

9ONPOS

8ALM

7COM

2AGIN

1GND

270Ω

270Ω

6PUL+, A+, CW+

5PUL-, A-, CW-

4DIR+, B+, CCW+

3DIR-, B-, CCW-

JP3

+

JP4 Gnd
S-
S+

+5VDC

JP1

FG

A

B

C

Current
Sensor

Current
Sensor

JP5

-

Main Power Input
24 ~ 75VDC

JP2 +5V

TxD

RxD

NC

A-

A+

Gnd

Li
ne

 D
riv

e
/ O

pe
n

C
ol

le
ct

or

C
an

 u
se

 In
te

rn
al

 o
r E

xt
er

na
l p

ow
er

 s
up

pl
y

S1 Status LED

Control and tuning
port to PC

[CA-MRS232-6]

Level Shifting Buffer

Motor Power

Encoder Feedback

Brake

Brake External Power

External +5VDC
power supply

+5V 0V

D/A

Host Controller

External Controller over
RS232, RS485, CAN

13
DYN2MS-02F-0116A17

2.3 JP3 Main I/O Details

■ JP3 Signal Specification

Pin No. Signal Symbol Type
12 Drive Internal +5VDC Supply +5VDC Output

Description Connection Circuit

- Drive internal +5VDC output
- Max Current Draw: 50mA
- Relative ground side with JP3 Pin.1

N/A

Pin No. Signal Symbol Type
11 Drive Disable Input ENA Input

Description Connection Circuit
- Apply +5VDC between Pin.7 Common to Disable servo drive
- Motor coasts when disabled (shaft free)
- Disable clears all pulse/analog commands
- Disable clears all position error
- Max. Voltage: +5VDC±%10
- Max. Current: 20mA

[A]
*See section 2.4

Refer to Section 2.4 JP3 I/O Connection Circuit for example connection diagram. Standard I/O

levels are +5VDC±%10. Contact DMM if the controller uses 12~24VDC level I/O.

Pin No. Signal Symbol Type
10 Absolute Zero Position Index Output ZRI Output

Description Connection Circuit

- Transistor ON (Signal LOW) if servo on Zero Position.
- Triggered at signal falling edge
- Zero Position output fixed to one mechanical motor shaft position per revolu-
tion. Accuracy maintained by absolute encoder.
- Used for precision zeroing, or indexing applications.
- Max. Voltage: 30V
- Max. Current: 30mA

[B]
*See section 2.4

14
DYN2MS-02F-0116A17

2.3 JP3 Main I/O Details

Refer to Section 2.4 JP3 I/O Connection Circuit for example connection diagram.

Pin No. Signal Symbol Type
9 OnPosition Output ONPOS Output

Description Connection Circuit

- Transistor ON (Signal LOW) if servo Off Position.
- Transistor OFF (Signal HIGH) if servo On Position.
- Servo On Position if motor position error within value set by OnPosRange
parameter.
- Max. Voltage: 30V
- Max. Current: 30mA

[B]
*See section 2.4

Pin No. Signal Symbol Type
8 Servo Alarm ALM Output

Description Connection Circuit

- Transistor ON (Signal LOW) if servo drive alarmed or faulted
- Servo drive triggers protective alarm relative to Current, Voltage, Tempera-
ture, Over Power, Position Lost Follow
- Max. Voltage: 30V
- Max. Current: 30mA

[B]
*See section 2.4

Pin No. Signal Symbol Type
7 Common COM Output

Description Connection Circuit

- JP3 I/O Pin. 8, 9, 10, 11 Control Signal Common. [A] [B]
*See section 2.4

15
DYN2MS-02F-0116A17

2.3 JP3 Main I/O Details

Refer to Section 2.4 JP3 I/O Connection Circuit for example connection diagram.

Pin No. Signal Symbol Type
6
5
4
3

STEP+, A+, CW+ Pulse Reference
STEP-, A-. CW- Pulse Reference
DIR+, B+. CCW+ Pulse Reference
DIR-, B-. CCW- Pulse Reference

STEP+
STEP-
DIR+
DIR-

Input

Description Connection Circuit

- Position command reference pulse input

- Compatible pulse form include:

 ♦ Pulse + Direction

 ♦ A/B phase quadrature with 90° phase differential

 ♦ CW + CCW

- Max. input pulse frequency: 500kHz

- Max. Voltage: +5VDC±%10

- Max. Current: 20mA

- Line Drive / Open Collector circuit on Controller Side

- Input pulse electronically scalable with GEAR_NUM parameter

[C]
*See section 2.4

Pin No. Signal Symbol Type
2
1

Analog Command Reference
Ground

AGIN
GND

Input
N/A

Description Connection Circuit

- Analog command reference for Speed/Torque servo mode

- Voltage reference ±10VDC

- ±12VDC max input voltage

- Max current: 0.6mA

[D]
*See section 2.4

16
DYN2MS-02F-0116A17

2.4 JP3 I/O Connection Circuit

■ Type [A] Connection Circuit - General Input Circuit

Applicable Signals:

Pin No. Signal Symbol Type
11 Drive Disable Input ENA Input

Open Collector Notes:
- Sink circuit shown.
Source circuit can also
be used.

Relay/Switch Notes:

ENA
270Ω

11

COM 7

+5VDC

ENA
270Ω

11

COM 7

+5VDC

17
DYN2MS-02F-0116A17

2.4 JP3 I/O Connection Circuit

■ Type [B] Connection Circuit - General Output Circuit

Applicable Signals:

Pin No. Signal Symbol Type
10
9
8
7

Absolute Zero Position Index Output
OnPosition Output
Servo Alarm
Common

ZRI
ONPOS
ALM
COM

Output
Output
Output
N/A

Collector Output Notes:

Photo Coupler Notes:

Relay Notes:

10, 9, 8

COM 7

1kΩ

+5VDC

10, 9, 8

COM 7

+5VDC

1kΩ

10, 9, 8

COM 7

5~24VDC

18
DYN2MS-02F-0116A17

2.4 JP3 I/O Connection Circuit

■ Type [C] Connection Circuit - Position Reference Pulse Input

Applicable Signals:

Pin No. Signal Symbol Type
6
5
4
3

STEP+, A+, CW+ Pulse Reference
STEP-, A-. CW- Pulse Reference
DIR+, B+. CCW+ Pulse Reference
DIR-, B-. CCW- Pulse Reference

STEP+
STEP-
DIR+
DIR-

Input

Line Driver Notes:
- Twisted pair cable with
shield grounded on
receiver side.

Open Collector
(DYN2 Internal Power Supply)

Notes:
- Twisted pair cable with
shield grounded on
receiver side.

Open Collector
(External Power Supply)

Notes:
- Power supply provid-
ed by host controller or
external source.
- Twisted pair cable with
shield grounded on
receiver side.

270Ω
6, 4

5, 3

+5VDC

270Ω
6, 4

5, 3

12+5VDC

1GND

270Ω
6, 4

5, 3

19
DYN2MS-02F-0116A17

2.4 JP3 I/O Connection Circuit

■ Type [D] Connection Circuit - Analog Command Reference Input

Applicable Signals:

Pin No. Signal Symbol Type
2
1

Analog Command Reference
Ground

AGIN
GND

Input
N/A

Notes:
- Twisted pair cable with
shield grounded on
receiver side.

2

1

AGIN

GND

D/A Converter
Op-amp

Potentiometer
etc.

20
DYN2MS-02F-0116A17

2.5 Main Power Supply Requirements

The DYN2 servo drive has a minimum operation input of +24VDC and max input of +75VDC. The servo
drives internal over-voltage alarm is triggered at +80VDC input and will shut down at this level. Consider
the voltage/speed gradient of the servo motor when selecting power supplies.

A smoothing (reservoir) capacitor is recommended after the DC power supply. The recommended capacity
is 100V 1,000uF per kW of motor load. Connect a fuse before the servo drive according to the circuit size.

DC Power Supply

110~240VAC Supply
R S T

-

WARNING!
● DO NOT reverse the polarity of the DC input power. Reversing the polarity will perma-
nently damage the servo drive and may cause electric shock. Ensure polarity is correct
before powering ON the servo drive.

+

1000uF
100V

1000uF
100V

Servo Drive Model Max. Motor Capacity Recommended Fuse
DYN2-T1A6S-00 200W 15A
DYN2-TLA6S-00 750W 30A

JP1+

-

DYN2 Servo Drive

■ Single Axis

■ Multi-Axis (Common DC Bus)

Fuse

Fuse

DC Power Supply

- +

1000uF
100V*1

1000uF
100V*1

JP1

+-

DYN2 Servo Drive
Axis 1

Fuse

Fuse

JP1

+-

DYN2 Servo Drive
Axis 1

JP1

+-

DYN2 Servo Drive
Axis 1

*1 Select fuse and smoothing
capacitor size according to number
of drives on DC bus.

21
DYN2MS-02F-0116A17

■ Regenerative Circuit

An external regenerative circuit may be needed for applications with high load inertia deceleration. Con-
tact DMM for DYN2 regenerative circuit requirements.

DC Power Supply

- +

JP1

+-

DYN2 Servo Drive
Axis 1

JP1

+-

DYN2 Servo Drive
Axis 1

JP1

+-

DYN2 Servo Drive
Axis 1

MCU

External Regen. Resistor

Regenerative
Circuit

22
DYN2MS-02F-0116A17

3 START UP

3.1 Mounting and Installation

The DYN2 servo drive can be mounted vertically or horizontally (vehicle mount). The servo drives should
be mounted by its rear chassis to an electrically conductive metal panel or plate. When mounting multiple
servo drives, at least 1mm clearance should be left between each unit. The small size of the DYN2 servo
drive is compatible with modular mounting. It can be placed adjacent to other devices with 1mm clear-
ance. Also consider the size of the connectors and cables in front of the servo drive when mounting.

The control cabinet internal temperature should not exceed 40°C. If using a fan to cool the servo drives,
the air flow should parallel the direction of the heat sink fin. The servo drive internally do not have a cool-
ing fan. Contact DMM if servo drives need to be placed adjacent without spacing.

Assem_obcover_FP01001
WEIGHT:

A3

SHEET 1 OF 1SCALE:1:2

DWG NO.

TITLE:

REVISIONDO NOT SCALE DRAWING

MATERIAL:

DATESIGNATURENAME

DEBUR AND
BREAK SHARP
EDGES

FINISH:UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

Q.A

MFG

APPV'D

CHK'D

DRAWN

Assem_obcover_FP01001
WEIGHT:

A3

SHEET 1 OF 1SCALE:1:2

DWG NO.

TITLE:

REVISIONDO NOT SCALE DRAWING

MATERIAL:

DATESIGNATURENAME

DEBUR AND
BREAK SHARP
EDGES

FINISH:UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

Q.A

MFG

APPV'D

CHK'D

DRAWN

Assem_obcover_FP01001
WEIGHT:

A3

SHEET 1 OF 1SCALE:1:2

DWG NO.

TITLE:

REVISIONDO NOT SCALE DRAWING

MATERIAL:

DATESIGNATURENAME

DEBUR AND
BREAK SHARP
EDGES

FINISH:UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

Q.A

MFG

APPV'D

CHK'D

DRAWN

>1mm >1mm

Airflow
Direction

(O
th

er
 D

ev
ic

es
)

(O
th

er
 D

ev
ic

es
)

>1mm>1mm

23
DYN2MS-02F-0116A17

3.2 Timing Chart

Main Power Supply

♦ Main Power Supply Cycle
Do not cycle the main power supply quickly as internal power electronics may be permanently damaged.
The main power should be turned on once during each operation cycle and should not be controllable by
software.

♦ Power Off Residual Voltage
After drive power off, the user should wait 60 seconds before touching the servo drive. A residual voltage
may remain in the servo drive after immediate power off and 60 seconds is needed for full discharge. This
time may be longer if a larger smoothing capacitor is connected to the input power line.

The residual voltage may cause the servo motor to rotate for a short period (<1 second) after immediate
power off. Consider this effect for emergency situations and take safety precaution to prevent damage to
personnel, equipment or machine.

S1 Status LED

Command Reference
Input Pulse/Analog

After servo drive power ON, make sure there is at least 150ms time before sending pulse or analog com-
mand to servo drive.

Servo ON
(Motor Servo Lock)

ON

OFF

ON

OFF

HIGH

LOW

ON

OFF

Normal Operation

50ms

100ms

150ms

Status LED lit Green

■ Power ON Timing

24
DYN2MS-02F-0116A17

■ Servo Disable / Enable Timing

When using the ENA signal to disable the servo drive to coast the servo motor, do not cycle this input
rapidly ON/OFF. If the signal is cycled too fast, the servo drive will not have enough time to initialize the
control program during Enable and can cause unwanted or dangerous results. Ensure that in the control
program, the below timing is satisfied. Once Disabled, do not Enable the servo drive during motor coast or
any time motor shaft is rotating, make sure motor shaft is completely stopped before Enable.

3.2 Timing Chart

ENA

Command Reference Input
Pulse / Analog

ON

OFF

HIGH

LOW

20ms

Servo Enabled

Servo Disabled

25
DYN2MS-02F-0116A17

3.3 DMMDRV Software Communication

♦ PC Running Requirements
 Win98/XP/2000/Vista/7
 250Mhz CPU
 64MB RAM
 250MB Hard Disk Space

The servo drive should be powered up with the servo motor encoder feedback and motor power cables
connected. The servo motor shaft will be servo-locked when powered ON. Connect the RS232 tuning
cable from port JP2 to host PC.

♦ DMMDRV Start Up
 1) Open the DMMDRV.exe executable
 2) Select “COMSET“ --> “COM PORT“
 3) Change the port number to the servo drive connected RS232 port, then select “OK”
 4) Select “SERVO SETTING”
 5) Select DYN2 -DRIVER
 6) Press Read on the Setting driver parameters and mode dialogue box. After approximately 1~2
seconds, the on-screen parameters will change according to the current internal parameter settings of the
connected servo drive. Ensure that the Driver Status indicates ServoOnPos to indicate that the drive has
closed the position loop with the motor and is fully operational.

♦ Test Movements
 1) Select “RS232” under the command input mode option, then click “SAVE ALL“ to
save this setting.
 2) Under the Test Motions menu, the user can select one of 4 test motions to JOG, STEP, SINE
or TRIM the servo motor. Only one test motion profile can be run at a time, use the radio buttons below
each section to select the movement profile.

WARNING!
● During Test movement procedures, the servo motor can rotate very quickly in either direc-
tion. Ensure that the servo motor is free to rotate and no objects are attached to or is near
the motor shaft. Secure the motor by its flange.

■ Version 1.0

26
DYN2MS-02F-0116A17

■ Version 328.1

3.3 DMMDRV Software Communication

♦ PC Requirements
 Operating System: Windows XP SP3 or higher
 *Recommended: Windows 7 (32-bit / 64-bit)
 Processor: Pentium 1 GHz or higher
 RAM: 512 MB or more
 Framework: .NET Framework 4 or higher
 Minimum disk space: 60MB

*See User Manual DSFEN for complete instructions:

27
DYN2MS-02F-0116A17

4 OPERATION

4.1 Position Servo Mode

█ Pulse Specifications

Voltage: +5VDC ± %10 (Contact DMM if higher level such as 12/24VDC is required)
Max pulse frequency: 500kHz
Minimum pulse width: 0.8μs

t1

t1, t4 ≥ 0.8μs
t2, t3 ≤ 1.0μs
t5, t6 ≥ 5.0μs

t2 t3 t4

t5 t6

PUL

DIR

♦ Pulse + Direction

♦ A/B phase quadrature with 90° phase differential

♦ CW + CCW

t1

t1, t4 ≥ 0.8μs
t2, t3 ≤ 1.0μs
t5, t6 ≥ 0.8μs
t7 ≥ 0.1μs

t2 t3 t4

t5 t6

Phase A

Phase B

t1

t1 ≥ 0.8μs
t2, t3 ≤ 1.0μs
t4 ≥ 5.0μs

t2 t3

t4

CW

CCW

t7

28
DYN2MS-02F-0116A17

█ Reference Pulse Format

♦ Pulse + Direction

Forward Reference Reverse Reference

PUL+
JP3-6

DIR+
JP3-4

PUL+
JP3-6

DIR+
JP3-4

♦ CW + CCW

Forward Reference Reverse Reference

CW+
JP3-6

CCW+
JP3-4

CW+
JP3-6

CCW+
JP3-4

♦ A/B phase quadrature with 90° phase differential

Forward Reference Reverse Reference

A+
JP3-6

B+
JP3-4

A+
JP3-6

B+
JP3-4

A Leads B B Leads A

The DYN2 servo drive accepts FORWARD reference as CLOCKWISE motor shaft rotation as viewed from
motor shaft side.

4.1 Position Servo Mode

29
DYN2MS-02F-0116A17

█ Connection Example

4.1 Position Servo Mode

♦ Line Drive Output

♦ Open Collector Output - External Power Supply

♦ Open Collector Output - Internal Power Supply

270Ω
6

5

270Ω
4

3

PUL+, A+, CW+

PUL-, A-, CW-

DIR+, B+, CCW+

DIR-, B-, CCW-

270Ω
6

5

12+5VDC

1GND

270Ω
4

3

PUL+, A+, CW+

PUL-, A-, CW-

DIR+, B+, CCW+

DIR-, B-, CCW-

270Ω
6

5

270Ω
4

3

PUL+, A+, CW+

PUL-, A-, CW-

DIR+, B+, CCW+

DIR-, B-, CCW-

+5VDC

30
DYN2MS-02F-0116A17

█ Electronic Gearing (GEAR_NUM Parameter)

█ Servo In Position Output Specifications (ONPOS)

█ Servo Position Error Accumulation

4.1 Position Servo Mode

On position range is a value used for determining whether the motor have reached the commanded posi-
tion or not. That on position range is selectable according to customer’s requirement. Suppose the Pset is
the commanded position, and Pmotor is the real motor position, if

|Pset - Pmotor|<=OnRange
it is said motor is ON the commanded position, otherwise not. That OnRange is set from 1~127. The real
position on range is: OnRange * 360(deg)/16,384. Set mouse curser into the OnPosition edit box, input
the desired on position value, then click the save button, On position value will be sent to the Drive with
all other parameters. The ONPOS output (JP3-9) will be HIGH if motor in position and LOW if motor off
position.

Gear number is set from 500 to 16,384, default value is 4,096. Gear number provides an electrical gear
ratio: 4096 / Gear_Num, from 0.25 ~ 8.192. For example, if Gear number = 4,096, the 16,384 input counts
from pulse will turn motor exactly one revolution. If Gear number = 500, 2,000 pulses will turn motor one
revolution.

For analog input in position servo mode, the analog input is from 0~10VDC range, by using the Gear Num-
ber, 0~10VDC analog input can turn motor from 0~90*4,096/Gear number (degrees). The gear number
has the same effect on the serial Point to Point movement or RS232 command input mode. Gear number
parameter is only effective for position servo mode.

The servo drive’s internal position error decides the status of the On Position signal and the Lost Phase
servo drive alarm.

The On Position signal is triggered (LOW) when the servo position error is within the OnPosRange set in
the DMMDRV program. The Lost Phase alarm is triggered when the servo motor is physically 90° or more
out of position for ~2 seconds.

The servo position error is cleared when the drive is disabled using the ENA input and does not accumu-
late when the drive is disabled.

31
DYN2MS-02F-0116A17

4.2 Speed Servo Mode

In speed servo mode, the DYN2 servo drive takes command from an external ±10VDC analog reference
voltage from the host controller to drive a linear proportional motor speed.

In speed servo mode, the torque output depends on the load on the servo motor and determined by the
motor feedback. Design the system so it can withstand the peak torque of the motor in use.

█ Control Reference

The DYN2 servo drive accepts FORWARD reference as CLOCKWISE motor shaft rotation as viewed from
motor shaft side. Positive reference voltage rotates the servo motor in the FORWARD (CLOCKWISE)
direction and negative reference voltage rotates the servo motor in the REVERSE (COUNTER CLOCK-
WISE) direction.

Reference
Voltage

Motor
Speed

Reference
Direction

Motor
Direction

+10V 6,000rpm FWD CW

+5V 3,000rpm FWD CW

-3V 1,800rpm REV CCW

+10V-10V -5V +5V

3,000rpm

6,000rpm

Reference Voltage

Motor Speed

32
DYN2MS-02F-0116A17

█ Acceleration / Deceleration Soft Start

In Speed Servo Mode, the Max Acceleration parameter in the servo drive can be used to soft start/stop the
servo motor. Since the speed command is sent as a rough step reference, it is often desirable to smooth
out the servo motor’s movement dynamics. Without soft start, the servo motor can accelerate/decelerate
too instantaneously. Soft start creates a smooth s-curve motion.

The relation to physical acceleration / deceleration time is measured as the rise time from 10% of the tar-
get speed to 90% of the target speed.

Rise from 10% to 90% time = 59.98/(Max Acceleration)2 seconds
Physical acceleration time = 1.2 * 59.98/(Max Acceleration)2 seconds

4.2 Speed Servo Mode

█ Torque Filter Constant

TrqCons is a first order low-pass filter used to smooth torque delivery in speed servo mode
which improves stability and accuracy of servo motor speed. The bigger value means wider
frequency range of that filter. That filter can be expressed as:

a / (S + a), here a = 26*TrqCons ; if TrqCons = 100, then a = 2600.

The filter is used to make the torque sent to the servo torque loop more smooth especially
for the heavier load when bigger SpeedGain setting is used. If a very quick response servo
with small load is desirable, the bigger value or even the value 127 should be used to en-
sure stability and fast dynamic follow.

The Torque Filter Constant parameter should only be used in speed servo mode. Leave this
parameter at “127” in position servo mode.

Rough Motion Smooth Motion!

Max Acceleration

33
DYN2MS-02F-0116A17

4.3 Torque Servo Mode

In torque servo mode, the DYN2 servo drive takes command from an external ±10VDC analog reference
voltage from the host controller to drive a linear proportional output current.

█ Control Reference - [1] Capacity Model: DYN2-T1

The DYN2 servo drive accepts FORWARD reference as CLOCKWISE motor shaft rotation as viewed from
motor shaft side. Positive reference voltage rotates the servo motor in the FORWARD (CLOCKWISE)
direction and negative reference voltage rotates the servo motor in the REVERSE (COUNTER CLOCK-
WISE) direction.

+10V-10V -5V +5V

5.0A

10.0A Reference
Voltage

Output
Current

Reference
Direction

Motor
Direction

+10V 10.0A FWD CW

+5V 5.0A FWD CW

-3V 3.0A REV CCW

█ Control Reference - [L] Capacity Model: DYN2-TL

The DYN2 servo drive accepts FORWARD reference as CLOCKWISE motor shaft rotation as viewed from
motor shaft side. Positive reference voltage rotates the servo motor in the FORWARD (CLOCKWISE)
direction and negative reference voltage rotates the servo motor in the REVERSE (COUNTER CLOCK-
WISE) direction.

+10V-10V -5V +5V

10.0A

20.0A Reference
Voltage

Output
Current

Reference
Direction

Motor
Direction

+10V 20.0A FWD CW

+5V 10.0A FWD CW

-3V 6.0A REV CCW

Reference Voltage

Reference Voltage

Current Output

Current Output

34
DYN2MS-02F-0116A17

4.4 RS232 Command Input Mode

4.5 Absolute Zero Position Index Output (ZRI)

The RS232 port is always active after power on for DYN-series servo drive, that active RS232 port could
be used for reading and setting Drive parameters and status, also could be used for sending point to point
position command if the RS232 mode is selected for position command input.

If the position command input mode is selected as Pulse mode or Analog mode, the RS232 port is still
active as mentioned above but it only can be used for reading and setting Drive parameters. The RS232
port could be easily accessed by using the GUI interface DMMDRV.exe after the connection between PC
and the Drive’s RS232 port. This is the easiest way to tune up the servo and make some test movements.
The RS232 port could be accessed by other microcontroller, or DSP if sending and reading data by using
DYN Drive’s RS232 protocol.

The PC or DSP is working as Master and the servo drive is always as slave. Several servo drives could
be linked for a serial network integrated multi-axis control.

See (Appendix A) for DYN2 servo drive RS232 protocol definitions.

The ZRI signal is output once per motor revolution to facilitate servo homing and indexing functions. ZRI
pulse can also be used to count motor revolutions or monitor servo motor speed. Accuracy of each pulse
is maintained by 14/16-bit absolute encoder. The mechanical output position of ZRI may vary between
each servo motor. It can also be used to compensate for mechanical or ball screw backlash. A calibration
procedure is necessary to set the absolute ZRI position in the controller.

The user should calibrate the position of the ZRI output with respect to the target mechanical position. The
falling edge of the ZRI output (JP3 Pin.10) should be used as the trigger. Pulse width and rising edge of
ZRI should not be used as trigger.

ZRI
JP3 Pin.10

+5V

0

ZRI Falling Edge Trigger

35
DYN2MS-02F-0116A17

5 PARAMETERS AND TUNING

5.1 Parameters Outline

The following parameters are adjustable by connection through RS232 or USB interface from the servo
drive to the PC. No matter the command mode, the JP2 RS232 port is always active for parameter setting
and drive configuration.

The Drive configuration and servo cons are stored in the EEPROM of servo drive when the save button is
pushed or parameters setting is issued through the serial communication.

The guaranteed write cycle for the EEPROM is 1 million times. Do not use serial communication to con-
stantly change the drive parameters as this will decrease servo drive life span. Major parameter change
and setting should only be done during initial testing and tuning. Actual drive operation should not require
constant parameter changes unless changing servo control modes on the fly through RS232.

Parameter Name Setting Range Details Applicable Servo
Mode

Main Gain [1 : 127]
The main gain for the servo loop, usually to be increased
as the motor load increases. The bigger value of MainGain
means wider frequency range of servo loop relatively.

Position
Speed
Torque
RS232

Speed Gain [1 : 127]

The speed gain for the servo loop, usually to be increased
as the motor load increases. The bigger value of speed
Gain means narrower frequency range of servo loop
relatively. Physically, heavier loads or higher inertia loads
should have lower dynamic ability, so the servo loop fre-
quency range should be more narrow by using bigger value
of Speed Gain. If the Speed Gain is too high, there will
be some loud noise because the torque command will be
too coarse, not smooth, the smaller Torque Constant (see
TrqCons) could be used to attenuate this noise.

Position
Speed
Torque
RS232

Integration Gain [1 : 127]

There is an integrator in the servo loop to ensure the error
between position command and real position be zero
during the steady state. Also that integrator will let servo
have more ability to attenuate the outside disturbance
torque. The bigger value of IntGain, the more ability of the
servo to attenuate the outside disturbance torque. Integra-
tion Gain should be decreased for heavier loads or higher
inertia loads.

Position
Speed
Torque
RS232

Torque Constant [1 : 127]

TrqCons is a first order filter constant, the bigger value
means wider frequency range of that filter. That filter can
be expressed as : a / (S + a), here a = 26*TrqCons, if
TrqCons = 100, then a = 2600. That filter is used to make
the torque sent to torque loop more smooth, especially for
heavier loads when bigger SpeedGain is used. If a very
quick response servo with small load is desirable, a bigger
value or even the value 127 should be used to ensure the
stability and dynamic performance.

Speed
Torque
RS232

36
DYN2MS-02F-0116A17

5.1 Parameters Outline

Parameter Name Setting Range Details Applicable Servo
Mode

Max Acceleration [1 : 127]

Determine the S-curve acceleration when using RS232
mode to make point to point motion linear/circular. Also
controls the response time of the first order low pass filter
in speed and torque servo control (soft start).

RS232
Speed
Torque

Max Speed [1 : 127] Determine the S-curve max speed when using RS232
mode to make point to point motion linear/circular. RS232

Driver ID [1 : 126]

Every drive has a unique ID number, which can be
assigned or read out by using ServoSetting dialog box.
Applicable when RS485net box not checked and there is
only one Drive connected through the RS232 port.
The default ID number for every Drive is 0. That ID num-
ber can be used for the network connection of RS485 or
for drive unit identification purposes. When RS485net box
is checked and there are more than one Drive connected
to the RS485/232 network, only the setting for the Drive
with the indicated ID number in the ServoSetting dialog
box can be read out or saved.

Position
Speed
Torque
RS232/485

On Position Range [1 : 127]

On position range is a value used for determining whether
the motor have reached the command position or not.
That on position range is selectable according to user’s
requirement. Suppose the Pset is the commanded posi-
tion, and Pmotor is the real motor position, if

|Pset - Pmotor|<=OnRange
it is said motor is on the commanded position, otherwise
not.

Position
Speed
Torque
RS232

Gear Num [500 : 16,384]

The amount of motor travel with reference to the number
of input pulses is set using the parameter Gear_Num.
The number of reference pulse needed for one complete
motor revolution is calculated as,

One motor revolution = 4xGEAR_NUM

For example, if Gear_Num is set to 4096, then 16,384
pulses are needed from the host controller for the motor to
make one complete revolution.

Position
RS232

37
DYN2MS-02F-0116A17

5.2 Servo Drive Gain Tuning

The DYN2 servo drive features simple 3 parameter Gain tuning to achieve optimized smooth performance.
The user should adjust the servo gain parameters Main Gain, Speed Gain and Integration Gain until they
achieve target response qualities. These parameters are all adjustable using the DMMDRV program.

The built in Adaptive Tuning algorithm optimize servo region of stability relative to load inertia. As long as
the 3 gain parameters are close to ideal settings, the servo will always achieve best response.

The overall method of Gain tuning follows as load mass or load inertia increase, the Main Gain and Speed
Gain parameters should be increased. If these are set too high, the servo may be over-tuned and start
vibrating or become noisy. The parameters should be increased/decreased until the motor smoothly fol-
lows command without vibration, noise or oscillations. The user can then fine tune the parameters to make
the motor “harder“ (faster response, more rigid motion) or “softer“ (slower response, smoother motion).

The servo motor should be coupled to the final machine before tuning. Make sure during tuning, the motor
is running the load and speed of the final machine or design. The user should use a trial and error method
to achieve the desired servo response.

In Speed and Torque servo mode, the Torque Filter Constant parameter can be adjusted to further smooth
the torque delivery and improve motor speed accuracy.

♦ Gain Tuning Procedure Flow

Tuning Begin
Run Servo Motor

Position Overshooting or
Oscillation.

Motor Vibration/Noise

Increase Main Gain,
increase Speed Gain until
overshooting suppressed

Decrease Main Gain,
decrease Speed Gain

Decrease Integration Gain

If still unstable

Unstable/Vibration

Speed Servo Mode

Decrease
Torque Filter Constant

Decrease Integration Gain

If still unstable

adaptive TUNING II

38
DYN2MS-02F-0116A17

5.2 Servo Drive Gain Tuning

♦ Ball Screw

█ Sample Load Type Tunings

Ball screw systems are mechanically very rigid and stiff. If high resolution pitch (e.g. 5mm
or 10mm) the default setting could even be used. The servo drive can be easily tuned
using Main Gain, Speed Gain, and Integration Gain. Increase Main Gain, Speed Gain and
Integration Gain relative to load mass until target response achieved. Decrease Integration
Gain if load inertia is big and system oscillates.

♦ Direct Mechanical Drive (Rigid systems, Robots)

Depending on load mass and inertia, increase Main Gain, Speed Gain and Integration Gain
until target response achieved. Decrease Integration Gain if load inertia is big and system
oscillates. In speed/torque servo mode, if relative load inertia is very high, the high Speed
Gain might increase motor noise, then decrease the Torque Filter Constant to attenuate
torque loop noise.

♦ Belt Drive / Pulley

Belt drive or pulley systems are low mechanical rigidity with slower response. Main Gain
and Speed Gain should be increased with higher load mass and relative load inertia. In-
tegration Gain should be decreased to give the position loop more time ro react to the low
rigidity system.

39
DYN2MS-02F-0116A17

6 MAINTENANCE

6.1 Alarm Specifications

The DYN2 servo drive is protected by 5 alarms. The S1 status indicator LED will flash to indicate when an
alarm is triggered. The specific alarm status can be read using the DMMDRV program.

♦ Internal Driver Status Readout

(1) Connect the PC to the servo drive JP2 port using RS232 cable
(2) Press Read on the Setting driver parameters and mode main screen.
(3) The Driver Status box will display the current status of the Servo Drive.

Alarm Cause Recommended Correction

Over Voltage
The internal DC bus voltage has
exceeded the allowed maximum lev-
els. The input DC voltage is too high.

- Check and confirm the connections to
the servo motor.
- Check that the servo motor is driving a
mass appropriate to its size.
- Check for any mechanical irregularities
that might be preventing the motors to
move freely.
- Add an external regenerative resistor

Over Temperature

The servo drives protective thermal
resistor has detected an unusually
high temperature inside the drive.
The control power transistor tempera-
ture is too high.

- Check that the drive’s ventilation
openings and heat sink are not being
blocked.
- Consult the servo drive’s ambient
temperature specifications and check if
the operation conditions are met.

Lost Phase
The encoder has detected an
irresolvable position error in the mo-
tor relative to the command signal.

- Check that the encoder feedback cable
is securely plugged from the servo motor
to the JP3 port of the servo drive.
- Check for any mechanical irregularities
that might be preventing the motors to
move freely.

Over Power
The servo drive has experienced an
output power exceeding the rated
value relative to the average value.

- Check and confirm the connections to
the servo motor.
- Check that the servo motor is driving a
mass appropriate to its size.
- Check for any mechanical irregularities
that might be preventing the motors to
move freely.

Over Current

The servo motor cannot move to its
command position and there is a
backlog of current in the servo drive
to try to move the servo motor.

- Check that the encoder feedback cable
is securely plugged from the servo motor
to the JP3 port of the servo drive.
- Check for any mechanical irregularities
that might be preventing the motors to
move freely.

40
DYN2MS-02F-0116A17

6.1 Alarm Specifications

♦ Alarm Reset

♦ Alarm Motor Stop

The power to the servo motor will be stopped when an alarm is triggered. Internal servo control turns off
and servo motor shaft becomes free. Power still remains in the logic circuit for drive diagnostic and drive
status reading. All commands including pulse, analog and RS232 will be ignored and will not accumulate
the internal position error.

6.2 - Drive Maintenance

Do not perform maintenance on the servo drive unless instructed to do so by DMM. The servo drive cover
or chassis should never be removed as high voltage components can cause electric short, shock or other
damage upon contact. Disassembly, repairs or any other physical modification to the servo drive is not
permitted unless approved by DMM.

♦ Regular Inspection

Inspect the servo drive regularly for:
● Dirt, dust or oil on the servo drive - make sure the servo drive cooling duct and heat
sink are free from debris
● Environment - ambient temperature, humidity and vibration according to servo drive
specification
● Loose screws
● Physical damage to servo drive or internal components

Once servo drive triggers an alarm, the user should use the DMMDRV program to read out the alarm
condition then inspect the machine, load or operation for cause to the alarm. The problem should be fixed
before re-setting the servo drive and running again. The servo drive main power should be cycled to fully
re-set and clear the servo alarm status.

WARNING!

● If the servo motor is coupled to a vertical axis that can drop due to gravity when the shaft
becomes free, take measure to prevent injury or damage when the drive alarm is triggered.
A motor with brake option may be necessary to stop vertical axis, or any axis acted on by an
external force, from dropping or crashing.

41
DYN2MS-02F-0116A17

7 RS232 Communication Protocol

The RS232 port is always active after power on for DYN series drive. This active RS232 port could be used for
reading and setting Drive parameters and status and also can be used for sending point to point position com-
mand if the RS232 mode is selected for position command input.

This DYN232M integrated motion command includes point-to-point S-curve, linear, arc and circular interpolation
for up to 3-axis of coordinated motion. These profiles can be easily executed using dedicated function codes.
The DYN servo drive features the most advanced built in S-Curve Generator in the industry to realize point to
point S-Curve motion. Response is extremely fast and motion filters are built in to optimize stability and provide
smoothest motor response. Featuring Dynamic Target Position Update (DTPU) technology, target position can
be instantaneously changed (without current command completion) and robot movements can be realized with
much faster cycle time and higher universal efficiency.

If the position command is selected as other modes, such as PULSE/DIR, CW/CCW, SPI or Analog mode, the
RS232 port is still active as mentioned above but only can be used for reading and setting drive parameters and
reading and setting drive status registers (Section 7.3).

The RS232 port can be accessed by a variety of host controllers including PC, microcontroller, FPGA, Arduino
or motion controller. The host device is working as a master and the servo drive is always working as a slave.
Several drives can be linked for a serial network in RS485.

DYN232M
D Y N A C S E R V O S Y S T E M - R S 2 3 2 M O T I O N

TM

RS232 Functions Include:
 ♦ Reading and changing servo drive parameters
 ♦ Reading and monitoring servo drive status including alarm, busy, in position, enable etc.
 ♦ Reading and monitoring servo drive configuration including servo mode,
 incremental/absolute mode, command mode, enable etc.
 ♦ Absolute encoder homing
 ♦ Absolute encoder position monitor: 16-bit absolute, 32-bit multi-turn
 ♦ Initiate generic profiles ConstSpeed, Square Wave, Sine Wave
 ♦ DYN232M motion control commands including:
 ♦ S-Curve point to point
 ♦ 3-axis coordinated linear motion
 ♦ 3-axis coordinated circular motion (arc, circle, oval)
 ♦ Incremental (relative) or absolute modes

The sample code in Section 7.7A Appendix : C++ Code for Serial Communication Protocol should be used
extensively to efficiently and accurately generate the RS232 data packet. Each subroutine function automatically
generates data packet structure for sending command and reading from DYN servo drive.

Never use serial communication to set the Drive configuration or parameters at a fast rate. This will cause servo
drive EEPROM busy in writing parameters all the time and also shorten it’s lifetime. The guaranteed parameter
writing cycle for EEPROM is 1 million times. Once a group of parameters and configuration are set, use it until
next necessary change.

TMDTPU
P O S I T I O N I N G

Example Host Controllers:
- Microcontroller/Embedded Controller
- PC (windows serial port via C/C++/C#, VB, Java etc.)
- PLC/HMI with serial output
- Arduino

42
DYN2MS-02F-0116A17

7.1 Interface and Format

█ Connector Specifications

Pin. 1 Gnd
Pin. 2~4 Reserved
Pin. 5 RS232 RxD signal input to Drive, CMOS/TTL level signal
Pin. 6 RS232 TxD signal output from Drive, CMOS/TTL level signal
Pin. 7 +5VDC output from Drive

Connection: JP2
Connector Type: 2.54mm Pitch Rectangular
Drive Header: Molex 70553-0041
Plug Connector: Molex 50-57-9407
Recommended Wire Gauge: 0.3mm2 (AWG22)

In order to connect JP2 with a PC’s RS232 port, an intermediate level shift buffer is necessary [buffer component:
ADM232]. The CA-MRS232-6 and CA-MTUSB-60 tuning cables has the level shift buffer built-in. RxD and TxD
RS232 signal from connector JP2 is TTL/CMOS level.

Do not connect servo drive directly to PC RS232 port without buffer component.

█ Communication Format

Baud Rate 38400
Start/Stop Bit 1
Odd/Even Verify Bit No
Data 8-bit

Full Duplex
Asynchronous (UART)

Voltage TTL/CMOS

RxD 5

Gnd 1

DYN Servo Drive JP2

+5VDC 7

TxD 6

TxD

Gnd

+5VDC

RxD

Host Controller
Max 10m

! WARNING Pin. 2 ~ 4 are reserved for factory use and are internally connected. Connecting
these pins to external devices may result in permanent damage to servo drive.

74AC125

DYN232M
D Y N A C S E R V O S Y S T E M - R S 2 3 2 M O T I O N

TM

TMDTPU
P O S I T I O N I N G

43
DYN2MS-02F-0116A17

█ Transmission

The DYN servo drive is always under command from host controller. When a function is called, the servo drive
will move the servo motor, return a data packet with the requested information, or set a parameter value. Once
a complete data packet has been received, the servo drive will not return any confirmation or acknowledgement
code. The command motion will be immediately run, requested data will be returned, or new parameter is saved.

The subroutine in Section 7.5A Appendix should be implemented to automatically generate a full data packet.
Otherwise, the host controller must ensure each data packet is complete and accurate before transmission.

7.1 Interface and Format

█ Reception

The DYN servo drive follows same data packet format and structure when returning data. Each data packet is
sent one byte at a time consisting of 8 data bits and two start stop bits for a total of 10 bits. Each byte will be sent
sequentially until complete packet is sent.

The host controller must process received data in shift register as soon as each byte is transmitted to avoid
overflow and garbage data. Alternatively, the receiver shift register buffer must have enough address to store
complete packet. The DYN servo drive will send each byte immediately after another, so at 38400 baud, each
byte will take approximately 260us to transmit - host controller should read or sample at this rate or faster when
receiving data.

44
DYN2MS-02F-0116A17

7.2 Packet Definition

Byte : consists of 8 bits, represented by b7b6b5b4b3b2b1b0 or b[7:0]. b7 is MSB and b0 is LSB, so called little
endian. Each packet consists of several bytes, expressed as:

Packet = Bn Bn-1 Bn-2 B1 B0
Packet length = n+1, Total n+1 bytes

Bn is start byte, B0 is end byte, similar to the byte structure, Bn is MSB and B0 is LSB as little endian rule.

The integer n varies as the variation of packet length. Functionally, a packet could be expressed as:

Packet = ID + packetLength + functioncode + data + checksum

Minimum packet length is 4 bytes, packet length 4 (n=3), 1 data byte.
Maximum packet length is 7 bytes, packet length 7 (n=6), 4 data byte.

Minimum packet length is 4. There is at least one data byte, for some function code that does not require data,
this data byte is meaningless, or called dummy byte which can be set to any value [0~127] and does not affect
the overall function of that packet.

ID One byte (Start byte)
packetLength + functioncode One byte
data One to four bytes
checksum One byte

7.2.1 Structure

7.2.3 Start byte Bn

The MSB bit of start byte is always zero, the other seven bits are used for the Drive ID number which is set from
0 ~ 63. The ID number can also be assigned through the DMMDRV software.

ID number 127 is reserved for every drive for broadcasting purposes. In other words, 127 is general ID number.
ID numbers 64 ~ 126 are internally reserved.

The communicating servo drive must be set to the same ID number to accept and execute data. The drive ID
can only be set if the RS485/232 Net check box is not checked (in the DMMDRV software).

7.2.2 Features for the byte inside a packet

The start byte takes form of 0xxxxxxx, or MSB is 0, x for 0 or 1. Any other byte except the start byte takes the
form of 1xxxxxxx, where x could be 0 or 1. Most significant bit in a byte can be used for determining if it is a
packet’s start byte or not.

DYN232M
D Y N A C S E R V O S Y S T E M - R S 2 3 2 M O T I O N

TM

TMDTPU
P O S I T I O N I N G

45
DYN2MS-02F-0116A17

7.2.4 Bn-1 byte

The Bn-1 byte is used for representing the packet function and packet length.

Bn-1 = 1 b6 b5 b4 b3 b2 b1 b0

The bit b6 and b5 are for the length of packet, expressed as:

The bit b4~b0 are used for the packet function, expressed as:

7.2 Packet Definition

Function (Sent by host) b[4:0] Data (Bytes) Remarks
Set_Origin 0x00 1(dummy) Set current position as zero ; See section 7.4.2
Go_Absolute_Pos 0x01 1~4 See section 7.4.1
Make_LinearLine 0x02 1~4
Go_Relative_Pos 0x03 1~4 See section 7.4.1
Make_CircularArc 0x04 1~4
Assign_Drive_ID 0x05 1 Assign ID to Drive; See Section 7.6
Read_Drive_ID 0x06 1(dummy)
Set_Drive_Config 0x07 1 One byte Configuration. See Section 7.3
Read_Drive_Config 0x08 1(dummy) Read Drive configuration. See Section 7.3
RegisterRead_Drive_Status 0x09 1(dummy) Ask for Drive status. See Section 7.3
Turn_ConstSpeed 0x0a 1~3 See section 7.4.2
Square_Wave 0x0b 1~3 See section 7.4.2
Sin_Wave 0x0c 1~3 See section 7.4.2
SS_Frequency 0x0d 1~3 See section 7.4.2
General_Read 0x0e 1~4 Read Drive position set
ForMotorDefine 0x0f 1 Internal Function - Not customer accessible
Set_MainGain 0x10 1
Set_SpeedGain 0x11 1
Set_IntGain 0x12 1
Set_TrqCons 0x13 1
Set_HighSpeed 0x14 1 Set MaxSpd,1~127 ; See section 7.4, 7.5
Set_HighAccel 0x15 1 Set MaxAcl,1~127 ; See section 7.4, 7.5

Set_Pos_OnRange 0x16 1 If |Pset-Pmotor|<= OnRange, then motor on Pos
OnRange ;1~127

Set_GearNumber 0x17 2 Gear_Number [500~16,384] ; ; See section 7.4, 7.5
Read_MainGain 0x18 1(dummy) See section 7.5 Example 11
Read_SpeedGain 0x19 1(dummy) See section 7.5 Example 11
Read_IntGain 0x1a 1(dummy) See section 7.5 Example 11
Read_TrqCons 0x1b 1(dummy) See section 7.5 Example 11
Read_HighSpeed 0x1c 1(dummy) See section 7.5 Example 11 ; See section 7.4
Read_HighAccel 0x1d 1(dummy) See section 7.5 Example 11 ; See section 7.4
Read_Pos_OnRange 0x1e 1(dummy) See section 7.5 Example 11
Read_GearNumber 0x1f 1(dummy) See section 7.5 Example 11 ; See section 7.4

b6 b5 Total packet length(=n+1)
0 0 4
0 1 5
1 0 6
1 1 7

46
DYN2MS-02F-0116A17

Functions (Sent by DYN drive) b[4:0] Data (Bytes) Remarks

Not used 0x00 ~
0x0a

*Do not read or write to these addresses

Is_MainGain 0x10 1 Returns [1:127] unsigned data
Is_SpeedGain 0x11 1 Returns [1:127] unsigned data
Is_IntGain 0x12 1 Returns [1:127] unsigned data
Is_TrqCons 0x13 1 Returns [1:127] unsigned data
Is_HighSpeed 0x14 1 Returns [1:127] unsigned data
Is_HighAccel 0x15 1 Returns [1:127] unsigned data
Is_Drive_ID 0x16 1 Returns [1:127] unsigned data
Is_PosOn_Range 0x17 1 Returns [1:127] unsigned data
Is_GearNumber 0x18 2
Is_Status 0x19 1
Is_Config 0x1a 1
Is_AbsPos32 0x1b 1~4
Is_TrqCurrent 0x1e 1~4

7.2 Packet Definition

7.2.5 Bn-2 ~ B1 bytes

Bn-2 ~ B1 (n>2) are used for representing the data in the packet. 7bits of a byte is used for containing the data.
The first bit MSB is always 1.

Minimum packet length is 4. There is at least one data byte, for some function code that does not require data,
this data byte is meaningless, or called dummy byte which can be set to any value [0~127] and does not affect
the overall function of that packet.

n Data Range Remark
3 -64 ~ 63 Only B1 is used
4 -8,192 ~ 8,191 Only B2, B1 are used
5 -1,048,576 ~ 1,048,575 B3, B2, B1 are used
6 -134,217,728 ~ 134,217,727 B4, B3, B2, B1 are used

Functions 0x10 ~ 0x1e are sent from the DYN drive in response to a function to request data. For example,
when Read_MainGain 0x18 is sent to the DYN2 drive, Is_MainGain 0x10 is returned as the function with the
Main Gain value as the data. See section 7.5 Example 11.

47
DYN2MS-02F-0116A17

7.2.6 B0 Byte

B0 byte is used for check sum, which is calculated from Bn~B1 as:

S = Bn + Bn-1 + Bn-2 +.... B1
B0 = 0x80 + Mod(S , 128), B0 = 0x80 + S - 128*[S/128]
B0 = 128 ~ 255

After receiving a packet, then calculate Temp = Mod(S , 128), if Temp = B0 , there is no error, otherwise there is
error during the packet transmission.

Example manual calculation:

 Given: Command to rotate ID=8 motor at 50rpm constant speed
 Packet Length = 4
 n = 3
 B3 = 0x08
 B2 = 0x8a
 B1 = 0xb2

 S = B3 + B2 + B1 = 0x144 = 324
 B0 = 0x80 + Mod(S , 128)
 = 0x80 + Mod(324, 128)
 = 0x80 + 0x44
 B0 = c4

7.2 Packet Definition

48
DYN2MS-02F-0116A17

7.3 Drive Configuration and Status Register

Drive configuration such as command input mode (RS232, CW/CCW etc.), alarm status, busy status are de-
scribed by the two register Config and Status which are stored inside Drives EEPROM and can be read or set
through RS232 communication.

█ Drive Status

Driver status is a byte data, lower 7 bit valid for indicating the Drive status, is it in the state of servo, alarm, on
position, or free.

 Status = x b6 b5 b4 b3 b2 b1 b0

 b0 = 0 : On position, i.e. |Pset - Pmotor| < = OnRange
 b0 = 1 : motor busy, or |Pset - Pmotor|> OnRange
 b1 = 0 : motor servo
 b1 = 1 : motor free
 b4 b3 b2 = 0 : No alarm
 1 : motor lost phase alarm, |Pset - Pmotor|>8192(steps), 180(deg)
 2 : motor over current alarm
 3 : motor overheat alarm, or motor over power
 4 : there is error for CRC code check, refuse to accept current command
 5~ 7 : TBD
 b5 = 0 : means buit in S-curve, linear, circular motion completed; waiting for next motion
 b5 = 1 : means buit in S-curve, linear, circular motion is busy on current motion
 b6 : pin2 status of JP3,used for Host PC to detect CNC zero position or others

█ Drive Configuration

Drive configuration for communication mode, servo mode etc is expressed by Config.

 Config = x b6 b5 b4 b3 b2 b1 b0

 b1 b0 = 0 : RS232 mode
 1 : CW,CCW mode
 2 : Pulse/Dir or (SPI mode Optional)
 3 : Anlog mode
 b2 = 0 : works as relative mode(default) like normal optical encoder
 b2 = 1 : works as absolute position system, motor will back to absolute zero or POS2(Stored in
 sensor) automatically after power on reset.
 b4 b3 = 0 : Position servo as default
 1 : Speed servo
 2 : Torque servo
 3 : TBD
 b5 = 0 : let Drive servo
 b5 = 1 : let Drive free, motor could be turned freely
 b6 : TBD

The default Config = x0000000, RS232 communication mode, absolute position sensor works as relative mode,
position servo, servo enabled. If the bit 5 of Config register is set to be 1, Drive will let motor shaft free (servo
disabled).

DYN232M
D Y N A C S E R V O S Y S T E M - R S 2 3 2 M O T I O N

TM

TMDTPU
P O S I T I O N I N G

49
DYN2MS-02F-0116A17

7.4 Common Function Details

7.4.1 Point to Point Movement (S-Curve)

Max Acceleration, Max Speed, and Gear Number are important data parameters for generating the S-Curve. The
DYN servo drive also applies a smoothing filter to the acceleration profile to generate best S-Curve performance.
The S-Curve profile is calculated as the following,

Gear Ratio =
4,096

GEAR NUMBER

Maximum Motor Speed [rpm] =
(MaxSpd+3)*(MaxSpd+3)

16
* 12.21 * Gear Ratio

Maximum Motor Acceleration [rpm/s] = MaxAcl * 635.78 * Gear Ratio

Motor Movement Position = Command Position * Gear Ratio * 4

Set parameter Output

Gear_Num = 4096

MaxSpd = 48

MaxAcl = 30

Command Position = 140,000

Gear Ratio = 1

Maximum Motor Speed = 1985 rpm

Maximum Motor Acceleration = 19073 rpm/s

Motor Movement Position = 560,000 positions

Example:

S-Curve:

Acceleration Time = 0.104 s
Distance During Acceleration = 1.72 rev
Constant Speed Travel Time = 0.154 s
Total S-Curve Time = 0.362 s

DYN232M
D Y N A C S E R V O S Y S T E M - R S 2 3 2 M O T I O N

TM

TMDTPU
P O S I T I O N I N G

S
pe

ed
 (r

pm
)

2500

2000

1500

1000

500

0

Time (s)

0.250.200.150.100.050 0.30 0.35 0.40

1985rpm

19
07

3
rp

m/s

0.104s 0.258s 0.362s

50
DYN2MS-02F-0116A17

7.4 Common Function Details

7.4.2 Constant Speed, Square Wave, Sin Wave

█ Turn Constant Speed

Function (Sent by host) b[4:0] Data (Bytes)
Turn_ConstSpeed 0x0a 1~3

The servo motor rotates at constant speed according to the rpm speed set by the Data Bytes. The direction of
rotation is CW (as viewed from shaft side) for positive speed and CCW for negative speed.

Example:

Set command Motion
Function = 0x0a (Turn_ConstSpeed)
Data = 0x578 (1,400) (use 2 data bytes B2, B1)
B2 = 1000 0101 *MSB must be 1
B1 = 1111 1000 *MSB must be 1

Servomotor rotates in CW direction (as viewed from shaft
side) at 1,400rpm

Function = 0x0a (Turn_ConstSpeed)
Data = 0xff88 (-120) (use 2 data bytes B2, B1)
0xff88 = 0x1111 1111 1000 1000
B2 = 1111 1111
B1 = 1000 1000

Servomotor rotates in CCW direction (as viewed from shaft
side) at 120rpm

█ Square Wave Motion

Function (Sent by host) b[4:0] Data (Bytes)
Square_Wave 0x0b 1~3
SS_Frequency 0x0d 1~3

The servo motor makes a square wave motion with instantaneous acceleration and deceleration com-
mand. The amplitude is set by the Square_Wave function Data and the frequency is set by the SS_Fre-
quency function Data Bytes. The motion is executed as soon as the Square_Wave function is received.
Note that Square_Wave and Sin_Wave shares the same SS_Frequency data value. The square wave-
form is generated internally within the DYN servo drive.

█ Sine Wave Motion

Function (Sent by host) b[4:0] Data (Bytes)
Sin_Wave 0x0c 1~3
SS_Frequency 0x0d 1~3

The servo motor makes a sine wave motion with continuous acceleration and deceleration. The amplitude
is set by the Sin_Wave function Data and the frequency is set by the SS_Frequency function Data Bytes.
The motion is executed as soon as the Sin_Wave function is received. Note that Sin_Wave and Square_
Wave shares the same SS_Frequency data value. The sine waveform is generated internally within the
DYN servo drive.

51
DYN2MS-02F-0116A17

7.5 Dynamic Target Position Update (DTPU)

The DYN servo drives built in S-Curve generator is able to update the target position instantaneously regardless
of whether the current command position has completed or not. As soon as a new command position is received,
the servo drive immediately updates the servomotor target to the newest position. This function is applicable to
both relative (incremental) and absolute positioning for all linear, or arc path profiles.

Without Dynamic Target Position Update DTPU technology, the servo drive must wait until the first, or current po-
sition command is completed before executing the next one. This limits the rate at which the motor position can
be updated and and can also have detrimental effects on safety for the machine and the operator. With DTPU
technology, the servo drive is always under active command from the controller, allowing much faster cycle time
and higher universal efficiency.

The servo drive also applies a curved acceleration command to the S-Curve to maintain smoothest servo motor
motion. At each S-Curve “transition” point, the normally rigid path is curved into smooth speed transitions.

█ Efficiency

When the axis is command to a new position, the servo drive immediately updates the target position and gen-
erates new S-Curve profile to reach new target position. Without DTPU technology, the axis must first finish its
current command before executing the next one, causing a delay in the overall positioning time.

This also allows more flexibility in programming and path planning as the controller no longer needs to wait until
a particular movement is finished before calculating the succeeding one. Robotic movements can be controlled
and commanded in real-time, significantly simplifying kinematic motion planning requirements on the controller.
Machine-level trajectory planning can almost be eliminated.

Without DTPU

With DTPU

S
pe

ed

Time

t1 t2 t3
t1 : Second command position given
t2 : First position reached,
 second position executed
t3 : Second position reached

S
pe

ed

Time

t1 t2
t1 : Second command position
 given, servo drive immediately
 targets to second position
t2 : Second position reached

Time Reduced

DYN232M
D Y N A C S E R V O S Y S T E M - R S 2 3 2 M O T I O N

TM

TMDTPU
P O S I T I O N I N G

52
DYN2MS-02F-0116A17

█ Curved Acceleration

█ Safety

7.5 Dynamic Target Position Update (DTPU)

Time

The DTPU algorithm also applies a curved acceleration to maintain smooth motion. At each S-Curve transition
point, the acceleration/deceleration is curved at the edges so speed is smoothly changed. This decreases motor
vibration. The smoothing is applied relative to total command movement so overall distance and position accura-
cy is not affected.

Transition Points

S
pe

ed

Time

t1 t2
t1 : Safety warning/hazard detected,
 axis commanded to retract
t2 : Current positioning reached,
 axis commanded to retract

Dynamic Target Position Update DTPU allows the axis to be commanded as soon as a safety hazard or warning
is detected. This means protection measures can be executed immediately. Without DTPU, the axis must finish
the current positioning before executing protection measures.

S
pe

ed

Time

t1
t1 : Safety warning/hazard detected,
 axis commanded to retract
t2 : Axis immediately retracts to safe
 position

Speed

Acceleration

Time

Speed

Acceleration

Smooth Speed Transitions!

Without DTPU

With DTPU

53
DYN2MS-02F-0116A17

Sent Packet (to DNY drive)
Function Function Code Data (Bytes)
Read_Drive_Config 0x08 1 (dummy)

Received Packet (from DYN drive)
Is_Config 0x1a 1

0 x x x x x x x
Bn

1 0 0 0 1 0 0 0
Bn-1

1 b6 b5 b4 b3 b2 b1 b0
Bn-2

1 x x x x x x x
B0

Dummy bits

0 x x x x x x x
Bn

1 0 0 11 0 1 0
Bn-1

1 b6 b5 b4 b3 b2 b1 b0
Bn-2

1 x x x x x x x
B0

Drive configuration dataPacket Length = 4
Function = 0x1a

Sent Packet (to DNY drive)
Function Function Code Data (Bytes)
Read_Drive_Status 0x09 1 (dummy)

Received Packet (from DYN drive)
Is_Status 0x19 1

0 x x x x x x x
Bn

1 0 0 0 1 0 0 0
Bn-1

1 b6 b5 b4 b3 b2 b1 b0
Bn-2

1 x x x x x x x
B0

Dummy bits

0 x x x x x x x
Bn

1 0 0 11 0 0 1
Bn-1

1 b6 b5 b4 b3 b2 b1 b0
Bn-2

1 x x x x x x x
B0

Drive status dataPacket Length = 4
Function = 0x19

Sent Packet (to DNY drive)
Function Function Code Data (Bytes)
Set_Drive_Config 0x07 1

Sent Packet (from DYN drive)

0 x x x x x x x
Bn

1 0 0 0 0 111
Bn-1

1 b6 b5 b4 b3 b2 b1 b0
Bn-2

1 x x x x x x x
B0

Drive configuration setting

None

7.6 Packet Structure Examples DYN232M
D Y N A C S E R V O S Y S T E M - R S 2 3 2 M O T I O N

TM

TMDTPU
P O S I T I O N I N G

54
DYN2MS-02F-0116A17

7.7 Application Examples

■ EXAMPLE 1

Condition:

Make 3rd axis motor right now position be the absolute zero. position(= 0), ID = 3. One byte dummy data 0x00,
Packet Length = 4.

Method:

B3 = 0x03
B2 = 0x80 + (PacketLenght-4)*32 + Set_Origin =0x80 + 0x00=0x80
B1 = 0x80 + 0x00 = 0x80
S = B3 + B2 + B1 = 0x03 + 0x80 + 0x80 = 0x103
B0 = 0x80 + Mod(S,128) = 0x83

As shown in the Sample Code, by calling the subroutine:

Send_Package(0x03,0), when Global_Func = (char)Set_Origin = 0x00.

The code will generate above B3~B0.

The motor power on position is the default absolute zero position, or it is the position set by using set absolute
zero function (0x00).

■ EXAMPLE 2

Condition:

Make 3th axis motor back to absolute zero position(= 0), ID = 3. Move to position 0 = 0x00, One byte data,
PacketLenght = 4.

Method:

B3 = 0x03
B2 = 0x80 + (PacketLenght-4)*32 + Go_Absolute_Pos=0x80 + 0x01=0x81
B1 = 0x80 + 0x00 = 0x80
S = B3 + B2 + B1 = 0x03 + 0x81 + 0x80 = 0x104
B0 = 0x80 + Mod(S,128) = 0x84

■ EXAMPLE 3

Condition:

Make 3th axis motor move 120(steps) from right now position, ID = 3.

120 = 0x78 = 0x0111 1000 > 63,Two byte data, high 7bits 000 0000=0x00, lower 7bits = 111 1000 = 0x78. And
use function Go_Relative_Pos (=0x03), Packet Length = 5.

Method:

B4 = 0x03
B3 = 0x80 +(PacketLength-4)*32+Go_Relative_PosP = 0x80+0x03 = 0xa3
B2 = 0x80 + 0x00 = 0x80
B1 = 0x80 + 0x78 = 0xf8
S = B4 + B3 + B2 + B1 = 0x03 + 0xa3 + 0x80 + 0xf8 = 0x21e
B0 = 0x80 + Mod(S , 128) = 0x80 + 0x1e = 0x9e

DYN232M
D Y N A C S E R V O S Y S T E M - R S 2 3 2 M O T I O N

TM

TMDTPU
P O S I T I O N I N G

55
DYN2MS-02F-0116A17

■ EXAMPLE 4

Condition:

Make 3th axis motor move -120(steps) from right now position, ID = 3.

Method:

-120 = 0x88 = 0xff88 < -63,Two byte data.
0xff88 = 0x1111 1111 1000 1000:
Lower 7bits = 000 1000 = 0x08 Higher 7bits = 0111 1111 = 0x7f

Use function Go_Relative_Pos(=0x03), Packet Length = 5.

B4 = 0x03;
B3 = 0x80 +(PacketLength-4)*32 + Go_Relative_Pos = 0x80 +0x04 =0xa3.
B2 = 0x80 + 0x7f = 0xff
B1 = 0x80 + 0x08 = 0x88
S = B4 + B3 + B2 + B1 = 0x03 + 0xa3 + 0xff + 0x88 = 0x22d
B0 = 0x80 + Mod(S , 128) = 0x80 + 0x2d = 0xad

■ EXAMPLE 5

Condition:

Make 2th axis motor turn at 60rpm, ID = 2.

Method:

Speed is 60, One Byte data is enough, 60 = 0x3c. Packet Length = 4.

B3 = 0x02;
B2 = 0x80 +(PacketLength-4)*32 + Turn_ConstSpeed = 0x80 + 0x0a = 0x8a
B1 = 0x80 + 0x3c = 0xbc
S = B3 + B2 + B1 = 0x02 + 0x8a + 0xbc
B0 = 0x80 + Mod(S , 128) = 0xc8

■ EXAMPLE 6

Condition:

Make 2th axis motor turn at -60rpm, ID = 2. Speed is -60 = 0xc4 = 0x1100 0100 > -63, One byte data 7bits =
0x0100 0100 = 0x44. Packet Length = 4.

Method:

B3 = 0x02;
B2 = 0x80 +(PacketLength-4)*32 + Turn_ConstSpeed = 0x80+0x40+0x0a = 0x8a
B1 = 0x80 + 0x44 = 0xc4
S = B3 + B2 + B1 = 0x02 + 0x8a + 0xc4 = 0x150
B0 = 0x80 + Mod(S , 128) = 0x80 + 0x50 = 0xd0

7.7 Application Examples

56
DYN2MS-02F-0116A17

■ EXAMPLE 7

Condition:

Make a line on X-Y Plane
Suppose right now position for three motors are(X0,Y0,Z0) = (0,0,0),
and the End point of straight line is (X1,Y1,Z1) = (100,200,0)

Method:

Always use General ID = 0x7f
The Feedrate = 3, could be from 1~127
Global_Func = (char)Make_LinearLine = 0x02;

Then send four packets to the Drives as:
Send_Package(ID,X1 - X0), i.e. Send_Package(0x7f,100)
Send_Package(ID,Y1 - Y0), i.e. Send_Package(0x7f,200)
Send_Package(ID,Z1 - Z0), i.e. Send_Package(0x7f,0)
Send_Package(ID,FeedRate),i.e. Send_Package(0x7f,3)

After the X-Y-Z three Drives received all four packets, they will start to move until the meet the end point of
(X1,Y1,Z1). Three motors will meet (X1,Y1,Z1) at the same time.

During the linear or circular interpolation motion, the Read_Drive_Status (=0x09) can used to read Drives status
register to check whether b5 = 0 or not, b5 = 0 means the coordinated motion be finished.

Send_Package(ID,Y1 - Y0) is the subroutine in the SAMPLE CODE, it will generate a packet as above exam-
ples.

■ EXAMPLE 8

Condition:

Make a circular arc on X-Y Plane

Suppose right now position for three motors are(X0,Y0) = (0,0), and the End point of arc is (X1,Y1) = (200,0) in
CW direction. It is easy to know the center of arc is (Xc,Yc) = (100,0)

Method:

The Feedrate = 1, could be from 1~127>0, because in CW direction otherwise be negative value.
The planeNumber = 0 because it is in X-Y plane
TwoBytes = (PlaneNumber<<8) | FeedRate = 0*256 + 1 = 1
Use General ID = 0x7f
Global_Func = (char)Make_CircularArc = 0x04;

Then send five packets to the Drives as:
Send_Package(ID,X0 - Xc), i.e. Send_Package(0x7f,-100)
Send_Package(ID,Y0 - Yc), i.e. Send_Package(0x7f,0)
Send_Package(ID,X1 - Xc), i.e. Send_Package(0x7f,100)
Send_Package(ID,Y1 - Yc), i.e. Send_Package(0x7f,0)
Send_Package(ID,TwoBytes),i.e. Send_Package(0x7f,1)

After the X-Y-Z three Drives received all four packets, Only two of three motors will move and finally will meet
(X1,Y1) at the same time. During the linear or circular interpolation motion, the Read_Drive_Status (=0x09)
can used to read Drives status register to check whether b5 = 0 or not, b5 = 0 means the coordinated motion
be finished.

Two equal half arcs must be made to make a circle.

7.7 Application Examples

57
DYN2MS-02F-0116A17

■ EXAMPLE 9

Condition:

Read servo motor absolute position

Method:

Call ReadMotorPosition32() subroutine function
Motor position stored in Motor_Pos32 variable as:
Motor_Pos32 = (long) [-2^27 : 2^27-1] = [-134,217,728 : 134,217,727]

7.7 Application Examples

■ EXAMPLE 10

Condition:

Read servo motor torque current

Method:

Call ReadMotorTorqueCurrent() subroutine function
Motor torque current stored in MotorTorqueCurrent variable as:
MotorTorqueCurrent = (short) [-2^15 : 2^15-1] = [−32,767 : 32,766]

MotorTorqueCurrent represents a relative number according to the RMS current output by servo drive. This
value is different between each servo motor capacity and varies between the DYN2 and DYN4 servo drive.
The customer can measure the change in MotorTorqueCurrent variable to monitor relative current draw. Use
servo motor torque constant specification to calculate torque output.

The following three examples makes use of the sample code in Section 7.7A Appendix : C++ Code for Serial
Communication Protocol. All contents of the sample code must be copied to the program.

■ EXAMPLE 11

Condition:

Read servo drive Main Gain parameter

Method:

Call ReadMainGain() subroutine function
DYN drive Main Gain stored in MainGain_Read variable

Use the same subroutine format for all Parameter Read functions 0x18~ 0x1f.

58
DYN2MS-02F-0116A17

7.8 RS485 Serial Network

Several Drives can be connected by RS485 after every Drive on the RS485 net have been designated an individ-
ual, or broadcasting ID number.

The RS485 check box must be checked if RS485 network is used which means there are at least two or more
Drive on the net, then every servo drive status and configuration can be read or set according to the ID number
on the servo setting dialog box. The ID number cannot be assigned to a particular Drive if RS485 network is
connected.

The Servo Drive ID number CAN ONLY BE SET when there is only ONE drive connected, then assigned a
new ID number to that drive without checking the RS485/232 Net check box (in the DMMDRV software).

The RS485 network is a serial network, if there is a packet in the network, one Drive will receive it first, if the
packet’s ID number is the same as the Drives, that packet will be received and processed by the Drive, otherwise
that packet will be relayed to the next Drive.

The Drive ID is contained in the first byte of the packet. When a packet is received, the drive only reads the first
byte, it will receive if ID is correct and relay to next drive if ID does not match. Data flow on the serial RS485 net
is very fast and efficient.

Every drive has a RS485NET node which contains a RS485 buffer such as LTC491.

DYN232M
D Y N A C S E R V O S Y S T E M - R S 2 3 2 M O T I O N

TM

TMDTPU
P O S I T I O N I N G

59
DYN2MS-02F-0116A17

7.9A Appendix : C++ Code for Serial Communication Protocol

The following code shows an example to generate a data packet and call functions in RS232 serial protocol.

 Note: in the description of RS232 communication protocol above (Section 7), the last byte of packet is
 always B0, but in the code of below, the first byte is always B0.

#define Go_Absolute_Pos 0x01
#define Is_AbsPos32 0x1b
#define General_Read 0x0e
#define Is_TrqCurrent 0x1e
#define Read_MainGain 0x18
#define Is_MainGain 0x10
 char InputBuffer[256]; //Input buffer from RS232,
 char OutputBuffer[256]; //Output buffer to RS232,
 unsigned char InBfTopPointer,InBfBtmPointer;//input buffer pointers
 unsigned char OutBfTopPointer,OutBfBtmPointer;//output buffer pointers
 unsigned char Read_Package_Buffer[8],Read_Num,Read_Package_Length,Global_Func;
 unsigned char MotorPosition32Ready_Flag, MotorTorqueCurrentReady_Flag, MainGainRead_Flag;
 long Motor_Pos32;
 int MotorTorqueCurrent, MainGain_Read;

void DlgRun::ReadPackage()
{
 unsigned char c,cif;

 ReadRS232Port(); // Include customer code to read from serial port

 while(There is data in the customer hardware RS232 receiving Buffer)
 {
 InputBuffer[InBfTopPointer] = HardwaerRS232ReceiveBuffer; //Load InputBuffer with received packets
 InBfTopPointer++;
 }

 while(InBfBtmPointer!=InBfTopPointer)
 {
 c = InputBuffer[Comm.InBfBtmPointer];
 InBfBtmPointer++;
 cif = c&0x80;
 if(cif==0)
 {
 Read_Num = 0;
 Read_Package_Length = 0;
 }
 if(cif==0||Read_Num>0)
 {
 Read_Package_Buffer[Read_Num] = c;
 Read_Num++;
 if(Read_Num==2)
 {
 cif = c>>5;
 cif = cif&0x03;
 Read_Package_Length = 4 + cif;
 c = 0;
 }
 if(Read_Num==Read_Package_Length)
 {
 Get_Function();
 Read_Num = 0;
 Read_Package_Length = 0;
 }
 }
 }
}

C++ Code for Serial Communication - Page 1

!

DYN232M
D Y N A C S E R V O S Y S T E M - R S 2 3 2 M O T I O N

TM

TMDTPU
P O S I T I O N I N G

60
DYN2MS-02F-0116A17

7.9A Appendix : C++ Code for Serial Communication Protocol

void DlgRun::Get_Function(void)
{
 char ID, ReceivedFunction_Code, CRC_Check;
 ID = Read_Package_Buffer[0]&0x7f;
 ReceivedFunction_Code = Read_Package_Buffer[1]&0x1f;
 CRC_Check = 0;
 for(int i=0;i<Comm.Read_Package_Length-1;i++)
 {
 CRC_Check += Read_Package_Buffer[i];
 }
 CRC_Check ^= Read_Package_Buffer[Comm.Read_Package_Length-1];
 CRC_Check &= 0x7f;
 if(CRC_Check!= 0){
 //MessageBox(“There is CRC error!”) - Customer code to indicate CRC error
 }
 else
 {
 switch(ReceivedFunction_Code){
 case Is_AbsPos32:
 Motor_Pos32 = Cal_SignValue(Read_Package_Buffer);
 MotorPosition32Ready_Flag = 0x00;
 break;
 case Is_TrqCurrent:
 MotorTorqueCurrent = Cal_SignValue(Read_Package_Buffer);
 MotorTorqueCurrentReady_Flag = 0x00;
 break;
 case Is_MainGain:
 MainGain_Read = Cal_SignValue(Read_Package_Buffer);
 MainGainRead_Flag = 0x00;
 break;
 default:;
 }
 }
}

/*Get data with sign - long*/
long DlgRun::Cal_SignValue(unsigned char One_Package[8])
{
 char Package_Length,OneChar,i;
 long Lcmd;
 OneChar = One_Package[1];
 OneChar = OneChar>>5;
 OneChar = OneChar&0x03;
 Package_Length = 4 + OneChar;
 OneChar = One_Package[2]; /*First byte 0x7f, bit 6 reprents sign */
 OneChar = OneChar << 1;
 Lcmd = (long)OneChar; /* Sign extended to 32bits */
 Lcmd = Lcmd >> 1;
 for(i=3;i<Package_Length-1;i++)
 {
 OneChar = One_Package[i];
 OneChar &= 0x7f;
 Lcmd = Lcmd<<7;
 Lcmd += OneChar;
 }
 return(Lcmd); /* Lcmd : -2^27 ~ 2^27 - 1 */
}

C++ Code for Serial Communication - Page 2

61
DYN2MS-02F-0116A17

//***************** Every Robot Instruction ******************
// Send a package with a function by Global_Func
// Displacement: -2^27 ~ 2^27 - 1
// Note: in the description of RS232 communication protocol above (Section 7), the last byte of packet is //
always B0, but in the code of below, the first byte is always B0.

void DlgRun::Send_Package(char ID , long Displacement)
{
 unsigned char B[8],Package_Length,Function_Code;
 long TempLong;
 B[1] = B[2] = B[3] = B[4] = B[5] = (unsigned char)0x80;
 B[0] = ID&0x7f;
 Function_Code = Global_Func & 0x1f;
 TempLong = Displacement & 0x0fffffff; //Max 28bits
 B[5] += (unsigned char)TempLong&0x0000007f;
 TempLong = TempLong>>7;
 B[4] += (unsigned char)TempLong&0x0000007f;
 TempLong = TempLong>>7;
 B[3] += (unsigned char)TempLong&0x0000007f;
 TempLong = TempLong>>7;
 B[2] += (unsigned char)TempLong&0x0000007f;
 Package_Length = 7;
 TempLong = Displacement;
 TempLong = TempLong >> 20;
 if((TempLong == 0x00000000) || (TempLong == 0xffffffff))
 {//Three byte data
 B[2] = B[3];
 B[3] = B[4];
 B[4] = B[5];
 Package_Length = 6;
 }
 TempLong = Displacement;
 TempLong = TempLong >> 13;
 if((TempLong == 0x00000000) || (TempLong == 0xffffffff))
 {//Two byte data
 B[2] = B[3];
 B[3] = B[4];
 Package_Length = 5;
 }
 TempLong = Displacement;
 TempLong = TempLong >> 6;
 if((TempLong == 0x00000000) || (TempLong == 0xffffffff))
 {//One byte data
 B[2] = B[3];
 Package_Length = 4;
 }
 B[1] += (Package_Length-4)*32 + Function_Code;
 Make_CRC_Send(Package_Length,B);
}

C++ Code for Serial Communication - Page 3

7.9A Appendix : C++ Code for Serial Communication Protocol

62
DYN2MS-02F-0116A17

void DlgRun::Make_CRC_Send(unsigned char Plength,unsigned char B[8])
{
 unsigned char Error_Check = 0;
 for(int i=0;i<Plength-1;i++)
 {
 OutputBuffer[OutBfTopPointer] = B[i];
 OutBfTopPointer++;
 Error_Check += B[i];
 }
 Error_Check = Error_Check|0x80;
 OutputBuffer[OutBfTopPointer] = Error_Check;
 OutBfTopPointer++;

 while(OutBfBtmPointer != OutBfTopPointer)
 {
 RS232_HardwareShiftRegister = OutputBuffer[OutBfBtmPointer];
 SendRS232Port(); // Include customer code to send to RS232 port
 OutBfBtmPointer++; // Change to next byte in OutputBuffer to send
 }
}

void DlgRun::ReadMotorTorqueCurrent(void)
{/*Below are the codes for reading the motor torque current */

 //Read motor torque current
 char ID = 0; //Suppose read 0 axis motor
 Global_Func = General_Read;
 Send_Package(ID , Is_TrqCurrent);

 //Function code is General_Read, but one byte data is : Is_TrqCurrent
 //Then the drive will return a packet, Function code is Is_TrqCurrent
 //and the data is 16bits Motor torque current.

 MotorTorqueCurrentReady_Flag = 0xff;
 While(MotorTorqueCurrentReady_Flag != 0x00)
 ReadPackage();

 //MotorTorqueCurrentReady_Flag is cleared inside ReadPackage() or inside
 //Get_Function() exactly after the MotorTorqueCurrent is updated.
}

C++ Code for Serial Communication - Page 4

7.9A Appendix : C++ Code for Serial Communication Protocol

63
DYN2MS-02F-0116A17

void DlgRun::ReadMotorPosition32(void)
{/*Below are the codes for reading the motor shaft 32bits absolute position */

 //Read motor 32bits position
 char ID = 0; //Suppose read 0 axis motor
 Global_Func = General_Read;
 Send_Package(ID , Is_AbsPos32);

 // Function code is General_Read, but one byte data is : Is_AbsPos32
 // Then the drive will return a packet, Function code is Is_AbsPos32
 // and the data is 28bits motor position32.

 MotorPosition32Ready_Flag = 0xff;
 While(MotorPosition32Ready_Flag != 0x00)
 ReadPackage();

 // MotorPosition32Ready_Flag is cleared inside ReadPackage() or inside
 // Get_Function() exactly after the Motor_Pos32 is updated.
}

void MoveMotorToAbsolutePosition32(char MotorID,long Pos32)
{
 char Axis_Num = MotorID;
 Global_Func = (char)Go_Absolute_Pos;
 Send_Package(Axis_Num,Pos32);
}

void ReadMainGain(char MotorID)
{
 char Axis_Num = MotorID;
 Global_Func = (char)Read_MainGain;
 Send_Package(Axis_Num, Is_MainGain);

 MainGainRead_Flag = 0xff;
 while(MainGainRead_Flag != 0x00)
 {
 ReadPackage();
 }
}

C++ Code for Serial Communication - Page 5

7.9A Appendix : C++ Code for Serial Communication Protocol

64
DYN2MS-02F-0116A17

void main(void)
{
 /* (1) Move motor 2 to absolute position of 321,456 - Method 1*/
 char Axis_Num = 2;
 Global_Func = (char)Go_Absolute_Pos;
 long pos = 321456;
 Send_Package(Axis_Num,Pos);

 /* (2) Move motor 2 to absolute position of 321,456 - Method 2 - Using subroutine function*/
 MoveMotorToAbsolutePosition32(2,321456);

 /* (3) Code for reading the motor shaft 32bits absolute position - Method 1
 This method uses a while delay to wait for Send_Package() function to complete
 */
 int i;
 InBfTopPointer = InBfBtmPointer = 0; //reset input buffer pointers
 OutBfTopPointer = OutBfBtmPointer = 0; //reset output buffer pointers

 for(i=0;i<8;i++)
 Read_Package_Buffer[i] = 0;

 Read_Num = Read_Package_Length = 0;

 //Reading motor 32bits position
 char ID = 0; //Suppose read 0 axis motor
 Global_Func = General_Read;
 Send_Package(ID , Is_AbsPos32);

 while(i<10000) //10~20ms waiting
 {
 i++;
 }

 ReadPackage(); //Motor absolute position stored in Motor_Pos32 variable

 /* (4) Reading the motor shaft 32bits absolute position - Method 2 using subroutine function*/
 ReadMotorPosition32(); //Motor absolute position stored in Motor_Pos32 variable

 /* (5) Reading the motor current using subroutine function*/
 ReadMotorTorqueCurrent(); //Motor torque current stored in MotorTorqueCurrent variable

 /* (6) Reading the main gain of 8th axis servo drive using subroutine function*/
 ReadMainGain(8); //Main Gain stored in MainGain_Read variable
}

C++ Code for Serial Communication - Page 6

7.9A Appendix : C++ Code for Serial Communication Protocol

65
DYN2MS-02F-0116A17

Sample Code Notes:

(1) The sample code uses a ring buffer structure to input and output data packet bytes. Two separate ring buffers are
using in the code as char InputBuffer[256] and char OutputBuffer[256].

Two position pointers are used in each buffer structure to index the data inside the buffer structure. For example, when
a data packet is received from the servo drive, each byte received is sequentially saved into the InputBuffer with the
InBfTopPointer incremented each time. This is done until the host hardware RS232 receiver buffer is empty, meaning
all packet bytes have been read and stored. Data is processed as first-in-first-out (FIFO) queue and starts at the index
of InBfBtmPointer. InBfBtmPointer is incremented each time a byte is processed until InBfBtmPointer=InBfTopPointer,
meaning all packet bytes have been processed.

C++ Code for Serial Communication - Page 7

7.9A Appendix : C++ Code for Serial Communication Protocol

66
DYN2MS-02F-0116A17

8 Modbus RTU (RS485) Communication

The DYN2-□□B6S-00 servo drive models are compatible with Modbus RTU communication over 2-Wire RS485.

Please refer to the following manual for Modbus communication specification:

Document Number DYNMB1-BL1645 DYN AC Servo Drive Modbus RTU Specification

67
DYN2MS-02F-0116A17

9 CAN Communication

The DYN2-□□B6S-00 servo drive models are compatible with CAN 2.0A specification. The data frame format is
a proprietary DYN servo drive format with efficient data packaging and high transmission rates up to 1Mbit/s for
fastest cycle time.

Please refer to the CAN communication manual for detailed specificaitons.

DYN servo drive CAN Protocol Data Framing:

S
ta

rt
of

 fr
am

e

11-bit Identifier

R
TR

ID
E

R
es

er
ve

d

Data
Length

Data
(1~4 Bytes)

15-bit CRC

C
R

C
 d

el
im

ite
r

A
C

K
 s

lo
t

A
C

K
 d

el
im

ite
r

7-bit
End of frame IFS

0 10 0 0 1 10 11 11 11 1 11

11-bit Identifier Consists both Drive ID and Command Function Code:

b4~b0 =

b5~b10 =

5-bit Function Code

Drive ID 0~64
0 = Broadcast

Function Code:
CAN Command 5-bit Function Code Data Length (Bytes)
0 Set_Origin 0x00 0
1 Go_Absolute_Pos_PTP 0x01 1~4
2 Make_LinearLine 0x02 1~4
3 Go_Relative_Pos_PTP 0x03 1~4
...

68
DYN2MS-02F-0116A17

APPENDIX A - SERVO DRIVE DIMENSIONS

♦ Exterior Dimensions

♦ Mounting (as viewed from rear)

 32

 8
5

 2

 2
.5

 2

.5

 3

 4

JP1

JP5

JP3

JP4
JP2

(Name Plate 1)

(Name Plate 2)

3 x 3 Mount

 75
 10

 2

 20

 3
1

 70

Chassis Ground
Terminal

Assem_obcover_FP01001
WEIGHT:

A3

SHEET 1 OF 1SCALE:1:2

DWG NO.

TITLE:

REVISIONDO NOT SCALE DRAWING

MATERIAL:

DATESIGNATURENAME

DEBUR AND
BREAK SHARP
EDGES

FINISH:UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

Q.A

MFG

APPV'D

CHK'D

DRAWN

 32

 8
5

 2

 2
.5

 2

.5

 3

 4

JP1

JP5

JP3

JP4
JP2

(Name Plate 1)

(Name Plate 2)

3 x 3 Mount

 75
 10

 2

 20

 3
1

 70

Chassis Ground
Terminal

Assem_obcover_FP01001
WEIGHT:

A3

SHEET 1 OF 1SCALE:1:2

DWG NO.

TITLE:

REVISIONDO NOT SCALE DRAWING

MATERIAL:

DATESIGNATURENAME

DEBUR AND
BREAK SHARP
EDGES

FINISH:UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

Q.A

MFG

APPV'D

CHK'D

DRAWN

 32

 8
5

 2

 2
.5

 2

.5

 3

 4

JP1

JP5

JP3

JP4
JP2

(Name Plate 1)

(Name Plate 2)

3 x 3 Mount

 75
 10

 2

 20

 3
1

 70

Chassis Ground
Terminal

Assem_obcover_FP01001
WEIGHT:

A3

SHEET 1 OF 1SCALE:1:2

DWG NO.

TITLE:

REVISIONDO NOT SCALE DRAWING

MATERIAL:

DATESIGNATURENAME

DEBUR AND
BREAK SHARP
EDGES

FINISH:UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

Q.A

MFG

APPV'D

CHK'D

DRAWN

 32

 8
5

 2

 2
.5

 2

.5

 3

 4

JP1

JP5

JP3

JP4
JP2

(Name Plate 1)

(Name Plate 2)

3 x 3 Mount

 75
 10

 2

 20

 3
1

 70

Chassis Ground
Terminal

Assem_obcover_FP01001
WEIGHT:

A3

SHEET 1 OF 1SCALE:1:2

DWG NO.

TITLE:

REVISIONDO NOT SCALE DRAWING

MATERIAL:

DATESIGNATURENAME

DEBUR AND
BREAK SHARP
EDGES

FINISH:UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN MILLIMETERS
SURFACE FINISH:
TOLERANCES:
 LINEAR:
 ANGULAR:

Q.A

MFG

APPV'D

CHK'D

DRAWN

69
DYN2MS-02F-0116A17

APPENDIX B - Operation Examples

█ Position Servo Mode - Ball Screw

1. Connect encoder feedback and motor power cable from servo drive to servo motor.
2. Connect RS232 tuning cable from servo drive JP2 to controller PC.
3. Power ON servo drive.
4. Open Windows Device Manager - Locate COM Port Number of RS232 tuning cable.

5. Open DMMDRV program.
6. Select COMSET --> COM PORT. Press “Change Port“ until RS232 tuning cable COM
 port number selected. Press “ok“.
7. Select ServoSetting --> DYN2-DRIVER. Setting drive parameters and mode main screen
 will open.
8. Press “Read” to read out the factory default or current setting of the servo drive. At any
 time, pressing “Save All“ will save the parameters into the servo drive.
9. Under Servo Mode, select “Position Servo”.

10. Under command input mode, select “Pulse/Dir”,
 “A/B Phase”, or “CW/CCW”.

11. Set GEAR_NUM parameter according to
 ball screw pitch and target travel speed.

Example:
Ball screw pitch = 10mm
Reduction = 2:1
Target Speed = 15m/min
Rated Motor Speed = 3,000rpm = 50rev/s
Controller Pulse Output Frequency = 100kHz = 100,000pulse/s

3,000rpm / 2 = 1,500rpm after reduction
1,500rpm * 10mm = 15,000mm/min = 15m/min

100,000pulse/s / 50rev/s = 2,000pulse/rev
2,000pulse/rev / 4 = 500
GEAR_NUM = 500

12. Tune Gain and OnPosition Range according to machine and operation requirements.
13. Click “Save All“ when finished adjustments.
14. The servo drive is ready to accept position pulse commands.

70
DYN2MS-02F-0116A17

Warranty and Liability

Products from DMM Technology Corp. are supported by the following warranty.
● 1-year from the date of product received by customer or 14 months from the month of original
invoice.

Within the warranty period, DMM Technology Corp. will replace or repair any defective product free of
charge given that DMM Technology Corp. is responsible for the cause of the defect. This warranty does
not cover cases involving the following conditions:

● The product is used in an unsuitable or hazardous environment not outlined in this manual, result-
ing in damages to the product.
● The product is improperly handled resulting in physical damage to the product. Including falling,
heavy impact, vibration or shock.
● Damages resulting from transportation or shipping after the original factory delivery.
● Unauthorized alterations or modifications have been made to the product.
● Alterations have been made to the Name Plate of the product
● Damages resulting in usage of the product not specified by this manual.
● Damages to the product resulting from natural disasters.
● The product has cosmetic alterations.
● The product does not conform to the original factory manufactured standards due to unauthorized
modifications.

█ Warranty

█ Liability

Use, operation, handling and storage of the DYN2 AC Servo Drive is solely responsible by the customer.
Any direct or indirect commercial loss, commercial profit, physical damage or mechanical damage caused
by the DYN2 AC Servo Drive is not responsible by DMM Technology Corp. The features and functionality
of the product should be used with full discretion by the customer.

71
DYN2MS-02F-0116A17

Product and Manual Disclaimer

█ Disclaimer

DMM Technology Corp. constantly strive to improve it’s products performance and reliability. The contents
of this manual outlines the latest features and specifications of the DYN2 AC Servo Drive and may be
changed at any time to reflect corrections, improvements or changes to the product or information in this
manual.

█ Manual Revision History

Version Manual Number Details Date
A1 DYN2MS-01E-0814A1 Release Version August 2014

A1.4 DYN2MS-01E-0115A14 - Updated pulse timing. Section 4.1
- Updated mounting dimensions January 2015

A1.5 DYN2MS-01E-0315A15 - Included RS232 Communication
- Corrections for error March 2015

A1.7 DYN2MS-02F-0116A17

- Added DTPU Section
- Revised Section 7
- Added Receptive Tuning Information
- Corrections for error
- Layout Changes
- Added DC Bus connection diagram
- Added regenerative circuit
- Adaptive tuning section revised

January 2016

A1.8 DYN2MS-14F-0917A18
- Updated CE certification
- Manual updated with B and C type
servo drive

September 2017

DYN2 Series
AC Servo Drive
TYPE A - GENERAL PURPOSE PULSE / ANALOG / RS232
TYPE B - MODBUS
TYPE C - CAN
Specification Manual

Manual Number
Revision

: DYN2MS-14F-0917A18
: A1.8 (14F)

DMM TECHNOLOGY CORP.
120 - 21320 Gordon Way Richmond, British Columbia V6W1J8 Canada

PHONE: +1 (604)-370-4168 | FAX: +1 (604) 285-1989
WEB: http://www.dmm-tech.com
SALES: sales@dmm-tech.com
INFO: info@dmm-tech.com

Copyright © 2017 DMM Technology Corp.

Electronic Version

Published In Canada

	■ Safety Notice ■
	■ Notations Used ■
	■ Standards Compliance ■

	Product Manual Preface
	Manual Contents
	A.1	Introduction
	A.2	Name Plate
	A.3	Servo Drive Model Number

	1	GENERAL SPECIFICATION
	1.1 Drive Overall Specification
	1.2 Control Block Diagram
	1.3 Encoder Specification

	2	CONNECTIONS AND WIRING
	2.1 DYN2 Servo Drive Body Layout
	2.2 Connector and Signal Specification
	2.3 JP3 Main I/O Details
	2.4	JP3 I/O Connection Circuit
	2.5	Main Power Supply Requirements

	3	START UP
	3.1 Mounting and Installation
	3.2 Timing Chart
	3.3 DMMDRV Software Communication
	3.3 DMMDRV Software Communication

	4	OPERATION
	4.1 Position Servo Mode
	4.2 Speed Servo Mode
	4.3 Torque Servo Mode
	4.4 RS232 Command Input Mode
	4.5 Absolute Zero Position Index Output (ZRI)

	5	PARAMETERS AND TUNING
	5.1 Parameters Outline
	5.2 Servo Drive Gain Tuning

	6	MAINTENANCE
	6.1 Alarm Specifications
	6.2 -	Drive Maintenance

	7	RS232 Communication Protocol
	7.1 Interface and Format
	7.1 Interface and Format
	7.2 Packet Definition
	7.2 Packet Definition
	7.3 Drive Configuration and Status Register
	7.4 Common Function Details
	7.4 Common Function Details
	7.5 Dynamic Target Position Update (DTPU)
	7.5 Dynamic Target Position Update (DTPU)
	7.6 Packet Structure Examples
	7.7 Application Examples
	7.7 Application Examples
	7.8 RS485 Serial Network
	7.9A Appendix : C++ Code for Serial Communication Protocol
	7.9A Appendix : C++ Code for Serial Communication Protocol

	8	Modbus RTU (RS485) Communication
	9	CAN Communication
	APPENDIX A - SERVO DRIVE DIMENSIONS
	APPENDIX B - Operation Examples

	Warranty and Liability
	Product and Manual Disclaimer

