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1 INTRODUCTION

Coordinated multi-axis CNC machine tools controlled with LINUXCNC, requires a spe-
cial kinematics component for each type of machine. This document describes some
of the most popular 5-axis machine configurations and then develops the forward (from
work to joint coordinates) and inverse (from joint to work) transformations in a general
mathematical process.

The kinematics components, as required by LINUXCNC, are given as well as VIS-
MACH simulation models to demonstrate their behaviour on a computer screen. Ex-
amples of HAL file data are also given.

2 5-AXIS MACHINE TOOL CONFIGURATIONS

In this section we deal with the typical 5-axis milling or router machines with five joints
or degrees-of-freedom which are controlled in coordinated moves.

3-axis machine tools cannot change the tool orientation, so 5-axis machine tools use
two extra axes to set the cutting tool in an appropriate orientation for efficient machining
of freeform surfaces.

A typical 5-axis machine tool (home converted for LINUXCNC) is shown on the front
page, and more examples in Figs. 4, 6 and 10-12 in section Figures [1,2].

The kinematics of 5-axes machine tools are much simpler than that of 6-axis serial arm
robots, since 3 of the axes are normally linear axes and only two are rotational axes.

3 TOOL ORIENTATION AND LOCATION

CAD/CAM systems are typically used to generate the 3D CAD models of the workpiece
as well as the CAM data for input to the CNC 5-axis machine. The tool or cutter location
(CL) data, is composed of the cutter tip position and the cutter orientation relative to
the workpiece coordinate system. Two vectors, as generated by most CAM systems,
as shown in Fig. 1, contain this information:

K =


Kx

Ky

Kz

0

 orientation vector; Q =


Qx

Qy

Qz

1

 position vector; (1)

The K vector is equivalent to the 3rd vector from the pose matrix E6 that was used in
the 6-axis robot kinematics [3] and the Q vector is equivalent to the 4th vector of E6.
In MASTERCAM for example this information is contained in the intermediate output
”.nci” file.
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Figure 1: Cutter location data

4 TRANSLATION AND ROTATION MATRICES

There are four fundamental transformation matrices on which 5-axis kinematics can be
based:

T (a, b, c) =


1 0 0 a
0 1 0 b
0 0 1 c
0 0 0 1

 R(X, θ) =


1 0 0 0
0 Cθ −Sθ 0
0 Sθ Cθ 0
0 0 0 1

 (2)

R(Y, θ) =


Cθ 0 Sθ 0
0 1 0 0

−Sθ 0 Cθ 0
0 0 0 1

 R(Z, θ) =


Cθ −Sθ 0 0
Sθ Cθ 0 0
0 0 1 0
0 0 0 1

 (3)

The matrix T (a, b, c) implies a translation in the X, Y, Z coordinate directions by the
amounts a, b, c respectively. The R matrices imply rotations of the angle θ about the
X, Y and Z coordinate axes respectively. The ”C” and ”S” letters refer to cosine and
sine functions respectively.

5 TABLE ROTARY/TILTING 5-AXIS CONFIGURATIONS: TRT

In these machine tools there two rotational axes mount on the work table of the ma-
chine. Two forms are typically used:

• A rotary table which rotates about the vertical Z-axes (C-rotation, secondary)
mounted on a tilting table which rotates about the X- or Y-axis (A- or B-rotation,
primary). The workpiece is mounted on the rotary table.

• A tilting table which rotates about the X- or Y-axis (A- or B-rotation, secondary)
is mounted on a rotary table which rotates about the Z-axis (C-rotation, primary),
with the workpiece on the tilting table.
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Figure 2: General configuration and coordinate systems

We need to describe a relationship between the workpiece coordinate system and the
tool coordinate system. This can be defined by a transformation matrix wAt, which can
be found by subsequent transformations between the different structural elements of
the machine, each with its own defined coordinate system. In general such a transfor-
mation may look as follows:

wAt =
w A1 ·1 A2 ·2 A3 · · ·nAt (4)

where each matrix i−1Ai is a translation matrix T or a rotation matrix R of the form (2,3).

In Fig. 2 a generic configuration with coordinate systems is shown [4]. It includes table
rotary/tilting axes as well as spindle rotary/tilting axes. Only two of the rotary axes are
actually used in a machine tool.

First we will develop the transformations for the first type of configuration mentioned
above, ie. a table tilting/rotary (TRT) type with no rotating axis offsets. We may give it
the name XYZAC-TRT configuration.

We also develop the transformations for same type (XYZAC-TRT), but with rotating
axis offsets.

Then we develop the transformations for a XYZBC-TRT configuration with rotating axis
offsets.
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Figure 3: Table tilting/rotary configuration

5.1 Transformations for a XYZAC-TRT machine tool with work offsets

We deal here with a simplified configuration in which the tilting axis and rotary axis in-
tersects at a point called the pivot point as shown in Fig. 3. therefore the two coordinate
systems Ows and Owp of Fig. 2 are coincident.

Forward transformation

The transformation can be defined by the sequential multiplication of the matrices:

wAt =
w AC ·C AA ·A AP ·P At (5)

with the matrices built up as follows:

wAC =


1 0 0 Lx

0 1 0 Ly

0 0 1 Lz

0 0 0 1

 CAA =


CC SC 0 0
−SC CC 0 0
0 0 1 0
0 0 0 1

 (6)

AAP =


1 0 0 0
0 CA SA 0
0 −SA CA 0
0 0 0 1

 PAt =


1 0 0 Px

0 1 0 Py

0 0 1 Pz

0 0 0 1

 (7)

In these equations Lx, Ly, Lz defines the offsets of the pivot point of the two rotary axes
A and C relative to the workpiece coordinate system origin. Furthermore, Px, Py, Pz

are the relative distances of the pivot point to the cutter tip position, which can also be
called the ”joint coordinates” of the pivot point. The pivot point is at the intersection of
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the two rotary axes. The signs of the SA and SC terms are different to those in (2,3)
since there the table rotations are negative relative to the workpiece coordinate axes
(note that sin(−θ) = −sin(θ), cos(−θ) = cos(θ)).

When multiplied in accordance with (5), we obtain:

wAt =


CC SCCA SCSA CCPx + SCCAPy + SCSAPz + Lx

−SC CCCA CCSA −SCPx + CCCAPy + CCSAPz + Ly

0 −SA CA −SAPy + CAPz + Lz

0 0 0 1

 (8)

We can now equate the third column of this matrix with our given tool orientation vector
K, ie.:

K =


Kx

Ky

Kz

0

 =


SCSA

CCSA

CA

0

 (9)

From these equations we can solve for the rotation angles θA, θC . From the third row
we find:

θA = cos−1(Kz) (0 < θA < π) (10)

and by dividing the first row by the second row we find:

θC = tan2−1(Kx, Ky) (−π < θC < π) (11)

These relationships are typically used in the CAM post-processor to convert the tool
orientation vectors to rotation angles.

Equating the last column of (8) with the tool position vector Q, we can write:

Q =


Qx

Qy

Qz

1

 =


CCPx + SCCAPy + SCSAPz + Lx

−SCPx + CCCAPy + CCSAPz + Ly

−SAPy + CAPz + Lz

1

 (12)

The vector on the right hand side can also be written as the product of a matrix and a
vector resulting in:

Q =


Qx

Qy

Qz

1

 =


CC SCCA SCSA Lx

−SC CCCA CCSA Ly

0 −SA CA Lz

0 0 1



Px

Py

Pz

1

 =Q AP · P (13)

This can be expanded to give

Qx = CcPx + SCCAPy + SCSAPz + Lx

Qy = −SCPx + CCCAPy + CCSAPz + Ly

Qz = −SAPy + CAPz + Lz

(14)

which is the forward transformation of the kinematics.
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Inverse Transformation

We can solve for P from equation (13) as P = (QAP )
−1·Q. Noting that the square matrix

is a homogenous 4x4 matrix containing a rotation matrix R and translation vector q, for
which the inverse can be written as:

qAp =

[
R q
0 1

]
(QAP )

−1 =

[
RT −RT q
0 1

]
(15)

where RT is the transpose of R. We therefore obtain:
Px

Py

Pz

1

 =


CC −SC 0 −CCLx + SCLy

SCCA CCCA −SA −SCCALx − CCCALy + SALz

SCSA CCSA CA −SCSALx − CCSALy − CALz

0 0 1



Qx

Qy

Qz

1

 (16)

The desired equations for the inverse transformation of the kinematics thus can be
written as:

Px = Cc(Qx − Lx)− SC(Qy − Ly)
Py = SCCA(Qx − Lx) + CCCA(Qy − Ly)− SA(Qz − Lz)
Pz = SCSA(Qx − Lx) + CCSA(Qy − Ly) + CA(Qz − Lz)

(17)

5.2 Transformations for a XYZAC-TRT machine with rotary axis offsets

We deal here with a extended configuration in which the tilting axis and rotary axis do
not intersect at a point but have an offset Dy. Furthermore, there is also an z-offset
between the two coordinate systems Ows and Owp of Fig. 2, called Dz. A VISMACH
model is shown in Fig. 4 and the offsets are shown in Fig. 5 (positive offsets in this
example). To simplify the configuration, the offsets Lx, Ly, Lz of the previous case are
not included. They are probably not necessary if one uses the G54 offsets in Linuxcnc
by means of the ”touch of” facility.

Forward Transformation

The transformation can be defined by the sequential multiplication of the matrices:
wAt =

w AO ·O AA ·A AP ·P At (18)

with the matrices built up as follows:

wAO =


CC SC 0 0
−SC CC 0 0
0 0 1 0
0 0 0 1

 OAA =


1 0 0 0
0 1 0 Dy

0 0 1 Dz

0 0 0 1

 (19)

AAP =


1 0 0 0
0 CA SA 0
0 −SA CA 0
0 0 0 1

 PAt =


1 0 0 Px

0 1 0 Py −Dy

0 0 1 Pz −Dz

0 0 0 1

 (20)
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Figure 4: VISMACH model of XYZAC-TRT

In these equations Dy, Dz defines the offsets of the pivot point of the rotary axes A
relative to the workpiece coordinate system origin. Furthermore, Px, Py, Pz are the
relative distances of the pivot point to the cutter tip position, which can also be called
the ”joint coordinates” of the pivot point. The pivot point is on the A rotary axis.

When multiplied in accordance with (18), we obtain:

wAt =


CC SCCA SCSA CCPx + SCCA(Py −Dy) + SCSA(Pz −Dz) + SCDy

−SC CCCA CCSA −SCPx + CCCA(Py −Dy) + CCSA(Pz −Dz) + CCDy

0 −SA CA −SA(Py −Dy) + CA(Pz −Dz) +Dz

0 0 0 1


(21)

We can now equate the third column of this matrix with our given tool orientation vector
K, ie.:

K =


Kx

Ky

Kz

0

 =


SCSA

CCSA

CA

0

 (22)

From these equations we can solve for the rotation angles θA, θC . From the third row
we find:

θA = cos−1(Kz) (0 < θA < π) (23)

and by dividing the second row by the first row we find:

θC = tan2−1(Kx, Ky) (−π < θC < π) (24)
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Figure 5: Table tilting/rotary XYZAC-TRT configuration, with axis offsets

These relationships are typically used in the CAM post-processor to convert the tool
orientation vectors to rotation angles.

Equating the last column of (21) with the tool position vector Q, we can write:

Q =


Qx

Qy

Qz

1

 =


CCPx + SCCA(Py −Dy) + SCSA(Pz −Dz) + SCDy

−SCPx + CCCA(Py −Dy) + CCSA(Pz −Dz) + CCDy

−SA(Py −Dy) + CA(Pz −Dz) +Dz

1

 (25)

The vector on the right hand side can also be written as the product of a matrix and a
vector resulting in:

Q =


Qx

Qy

Qz

1

 =


CC SCCA SCSA −ScCADy − SCSADz + SCDy

−SC CCCA CCSA −CCCADy − CCSADz + CCDy

0 −SA CA SADy − CADz +Dz

0 0 1 1



Px

Py

Pz

1

 =Q AP · P

(26)

which is the forward transformation of the kinematics.

Inverse Transformation

We can solve for P from equation (25) as P = (QAP )
−1 · Q using (15) as before. We

thereby obtain:


Px

Py

Pz

1

 =


CC −SC 0 0

SCCA CCCA −SA −CADy + SADz +Dy

SCSA CSSA CA −SADy − CADz +Dz

0 0 1



Qx

Qy

Qz

1

 (27)
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The desired equations for the inverse transformation of the kinematics thus can be
written as:

Px = CcQx − SCQy

Py = SCCAQx + CCCAQy − SAQz − CADy + SADz +Dy

Pz = SCSAQx + CSSAQy + CAQz − SADy − CADz +Dz

(28)

5.3 Transformations for a XYZBC-TRT machine with rotary axis offsets

Figure 6: VISMACH model of XYZBC-TRT

We deal here again with a extended configuration in which the tilting axis (about the
y-axis) and rotary axis do not intersect at a point but have an offset Dx. Furthermore,
there is also an z-offset between the two coordinate systems Ows and Owp of Fig. 2,
called Dz. A VISMACH model is shown in Fig. 6 (negative offsets in this example) and
the positive offsets are shown in Fig. 7.

Forward Transformation

The transformation can be defined by the sequential multiplication of the matrices:

wAt =
w AO ·O AB ·B AP ·P At (29)
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Dx
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B-rotation

C-rotation

Figure 7: Table tilting/rotary XYZBC-TRT configuration, with axis offsets

with the matrices built up as follows:

wAO =


CC SC 0 0
−SC CC 0 0
0 0 1 0
0 0 0 1

 OAB =


1 0 0 Dx

0 1 0 0
0 0 1 Dz

0 0 0 1

 (30)

BAP =


CB 0 −SB 0
0 1 0 0
SB 0 CB 0
0 0 0 1

 PAt =


1 0 0 Px −Dx

0 1 0 Py

0 0 1 Pz −Dz

0 0 0 1

 (31)

In these equations Dx, Dz defines the offsets of the pivot point of the rotary axes B
relative to the workpiece coordinate system origin. Furthermore, Px, Py, Pz are the
relative distances of the pivot point to the cutter tip position, which can also be called
the ”joint coordinates” of the pivot point. The pivot point is on the B rotary axis.

When multiplied in accordance with (29), we obtain:

wAt =


CCCB SC −CCSB CCCB(Px −Dx) + SCPy − CCSB(Pz −Dz) + CCDx

−SCCB CC SCSB −SCCB(Px −DX) + CCPy + SCSB(Pz −Dz)− SCDx

SB 0 CB SB(Px −Dx) + CB(Pz −Dz) +Dz

0 0 0 1


(32)

We can now equate the third column of this matrix with our given tool orientation vector
K, ie.:

K =


Kx

Ky

Kz

0

 =


−CCSB

SCSB

CB

0

 (33)
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From these equations we can solve for the rotation angles θB, θC . From the third row
we find:

θB = cos−1(Kz) (0 < θB < π) (34)

and by dividing the second row by the first row we find:

θC = tan2−1(Ky, Kx) (−π < θC < π) (35)

These relationships are typically used in the CAM post-processor to convert the tool
orientation vectors to rotation angles.

Equating the last column of (32) with the tool position vector Q, we can write:

Q =


Qx

Qy

Qz

1

 =


CCCB(Px −Dx) + SCPy − CCSB(Pz −Dz) + CCDx

−SCCB(Px −DX) + CCPy + SCSB(Pz −Dz)− SCDx

SB(Px −Dx) + CB(Pz −Dz) +Dz

1

 (36)

The vector on the right hand side can also be written as the product of a matrix and a
vector resulting in:

Q =


Qx

Qy

Qz

1

 =


CCCB SC −CCSB −CcCBDx + CCSBDz + CCDx

−SCCB CC SCSB SCCBDx − SCSBDz − SCDx

SB 0 CB −SBDx − CBDz +Dz

0 0 1 1



Px

Py

Pz

1

 =Q AP · P

(37)

which is the forward transformation of the kinematics.

Inverse Transformation

We can solve for P from equation (37) as P = (QAP )
−1 · Q. With the same approach

as before, we obtain:


Px

Py

Pz

1

 =


CCCB −SCCB SB −CBDx − SBDz +Dx

SC CC 0 0
−CCSB SCSB CB SBDx − CBDz +Dz

0 0 1



Qx

Qy

Qz

1

 (38)

The desired equations for the inverse transformation of the kinematics thus can be
written as:

Px = CcCBQx − SCCBQy + SBQz − CBDx − SBDz +Dx

Py = SCQx + CCQy

Pz = −CCSBQx + SCSBQy + CBQz + SBDx − CBDz +Dz

(39)

6 SPINDLE ROTARY/TILTING 5-AXIS CONFIGURATIONS: SRT

In these machine tools there two rotational axes mount on the work spindle head of the
machine. Two forms are typically used:
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Figure 8: Rotating/tilting spindle router

• A rotary axis which rotates about the vertical Z-axes (C-rotation, primary) on
which a tilting spindle is mounted such that the tilting is a secondary rotation
about the X-axis (A-rotation) or Y-axis (B-rotation).

• A rotary axis (primary) which rotates about the X-axis or Y-axis on which a tilting
spindle is mounted such that the tilting is a secondary rotation about the opposite
Y-axis or X-axis.

As an example we will develop the transformations for the first type of configuration
mentioned above, in which we will use for the secondary rotation a B-rotation. We give
the name XYZBC-SRT to this configuration.

6.1 Transformations for a XYZBC-SRT machine tool

A model of a router with a rotary/tilting spindle head is shown in Fig. 8. The general
geometry of a tilting/rotating head with three possible rotations is shown in Fig. 9. Only
two rotations are typically implemented.

Forward Transformation

The transformation can be defined by the sequential multiplication of the matrices:
wAt =

w AP ·P AC ·C AB ·B At (40)

with the matrices built up as follows:

wAP =


1 0 0 Px

0 1 0 Py

0 0 1 Pz

0 0 0 1

 PAC =


CC SC 0 0
−SC CC 0 0
0 0 1 0
0 0 0 1

 (41)
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662 R.-S. Lee and C.-H. She 

Y = Ly+Py = (QzLx)CCbASCbc+(Q,.-Ly) 

C+aCqbc-(Qz-LOSqba+Ly (13) 

Z = L~+P~ = (Qx-L~)S+AS+c+(Qy-L,.) 

S~gACqbc+(Qz-Lz)CdP A + t  ~ (14) 

where arctan2(y, x) is the function that returns angles in the 

range -v--< 0--< w by examining the signs of both y and 

x [12]. 

4.2 Spindle-Tilting Type 

For the spindle-tilting type configuration, two rotational axes 

(A and B axes) are applied to the spindle (Fig. 2b) so that the 

pivot point R (Fig. 5) is selected to be the intersection of these 

two axes. Furthermore, since the spindle will rotate during 

machining, the effective tool length, L~, as determined from 

the pivot point R to the cutter tip centre Or, is required 

for NC data derivation. The same coordinate transformation 

procedure, similar to the table-tilting type configuration, leads 

to the following equations: 

[K~ Ky gz] T= Trans(P~, Py, P~) Rot(Kd)B) 

Rot(X,+A)[0 0 1 0] v (15) 

[Qx Q~ Q~ 1] T = Trans(Px, Py, P~) Rot(Y,68) 

Rot(X,c[~a) [0 0 -L, 1] r (16) 

[X Y Z 11T=[P:~PyPz-L,I] T (17) 

Therefore, the analytical equations for NC data can be 

obtained by solving equations (15)-(17): 

A = (hA = amsin(-Ky) (-7/2 <-- qba -< 7#2) (18) 

B = ~bB = arctan2(K×,K~) (-'rr ~ ~ < "rr) (19) 

X = Px = Qx q- LtC~bASf~B (20) 

B 

) Q . ~ j  Lt 

Cutting tool 

Workpiece"/- " ~ Q U  

Fig. 5. Coordinate systems of spindle-tiRing type configuration. 

\ . . / "  (pivot point) 

Fig. 6. Coordinate systems of table/spindle-tilting type configuration. 

Y = Py  = Qy - LtSC~A 

Z = Pz - L ,  = Q~ + ttf+AC(~8 -- Z t 

(21) 

(22) 

4.3 Table/Spindle-Tilting Type 

In the case of this configuration, there is one rotation axis on 

the rotary table and spindle, and the pivot points are located 

on the A and B axes, respectively. As shown in Fig. 6, the 

pivot point RA is located o_n the A axis arbitrarily, and the 

pivot point RB is chosen to be the intersection of the spindle 

tilting axis (B axis) and the cutting tool's axis. The offset 

vector I j  + L,J + L~k is calculated from the origin O,~ to the 

point RA and the effective tool length, L, is the distance 

between the pivot point RB and the cutter tip centre O~. As 

before, the following equations can be obtained using the 

coordinate transformation matrices: 

[Kx Ky K~ 0] T = Trans(L~, L~,, Lz) Rot(X,-~a) 

Trans(P~, Py, P~) Rot(Y,+B) [0 0 1 0] T (23) 

[Q, Qy Q~ 1] T = Trans(L,, Ly, L~) Rot(X,-qba) 

Trans(p~, P,,, P~) Rot(Y,~) [0 0 -L~ 0] T (24) 

[X Y Z l] T: [L~+P~ Ly+Py L~+P:-Lt 1] T (25) 

Once again, by solving equations (23)-(25), the analytical 

equations for NC data of this machine configuration can be 

expressed as: 

B = ~B = arcsin(Kx) (-7/2 ~ qb~ --< zr/2) (26) 

A = 0g = arctan2(Ky, K 0 (--rr ~< d~a <-- or) (27) 

X = Lx+P:, = Qy+LtS6B (28) 

Y = L,+P, = (Qy-L~)C~bA-(Q:-L~)S+A+L,. (29) 

C

Figure 9: Spindle tilting/rotary configuration

CAB =


CB 0 SB 0
0 1 0 0

−SB 0 CB 0
0 0 0 1

 BAt =


1 0 0 0
0 1 0 0
0 0 1 −Lt

0 0 0 1

 (42)

In these equations Lt defines the offset of the pivot point of the two rotary axes C and
B relative to the tool tip. This gives the effective tool length, so that if tools are changed
this variable must be set to reflect the new effective length.

Px, Py, Pz are again the relative distances of the pivot point with respect to the tool
position in the workpiece coordinate system, which can also be called the ”joint coor-
dinates” of the pivot point.

When multiplied in accordance with (40), we obtain:

wAt =


CCCB −SC CCSB −CCSBLt + Px

SCCB CC SCSB −SCSBLt + Py

0 0 CB −CBLt + Pz

0 0 0 1

 (43)

We can now equate the third column of this matrix with our given tool orientation vector
K, ie.:

K =


Kx

Ky

Kz

0

 =


CCSB

SCSB

CB

0

 (44)

From these equations we can solve for the rotation angles θB, θC . From the third row
we find:

θB = cos−1(Kz) (0 < θA < π) (45)

and by dividing the second row by the first row we find:

θC = tan2−1(Ky, Kx) (−π < θC < π) (46)
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These relationships can be used in the CAM post-processor to convert the tool orien-
tation vectors to rotation angles.

Equating the last column of (43) with the tool position vector Q, we can write:

Q =


Qx

Qy

Qz

1

 =


−CCSBLt + Px

−SCSBLt + Py

−CBLt + Pz

1

 (47)

This can be rewritten to give simply

Qx = Px − CCSBLt

Qy = Py − SCSBLt

Qz = Pz − CBLt

(48)

which is the forward transformation of the kinematics.

The relationship between the X,Y, Z values which we have to supply in our Gcode
program can be found from (48) by setting θA = θC = 0 and X = Qx, Y = Qy, Z = Qz.
This results in: 

X
Y
Z
1

 =


Px

Py

Pz − Lt

1

 (49)

Inverse Transformation

We can solve for P from equation (48) directly to get:

Px = Qx + CCSBLt

Py = Qy + SCSBLt

Pz = Qz + CBLt

(50)

These are desired equations for the inverse transformation of the kinematics.

and using (49):
X = Qx + CCSBLt

Y = Qy + SCSBLt

Z = Qz + CBLt − Lt

(51)

7 TOOL-LENGTH COMPENSATION

In order to use tools from a tool table sequentially with tool-length compensation ap-
plied automatically, a further Z-offset is required. For a tool that is longer than the
”master” tool, which typically has a tool length of zero, Linuxcnc has a variable called
”motion.tooloffset.z”. If this variable is passed on to the kinematic component (and
VISMACH PYTHON script), then the necessary additional Z-offset for a new tool can
be accounted for by adding the component statement, for example:
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Dz = Dz + tool-offset

where ”tool-offset” is the variable passed on the the component by a .hal entry such
as:

net tool-offset <= motion.tooloffset.z => XYZACkins.Tool-offset

8 KINEMATICS COMPONENTS

The kinematics is provided in LinuxCNC by a specially written component in the C-
language. It has a standard procedure structure and is therefore normally copied from
some standard example from the library of components, and then modified.

The component is compiled and installed in the correct place in the file system by a
command such as:

sudo comp --install kinsname.c

in older versions of Linuxcnc or

sudo halcompile --install kinsname.c

in newer versions, where ”kinsname” is the name you give to your component. The
sudo prefix is required to install it and you will be asked for your root password.

Once it is compiled and installed you can reference it in your config setup of your
machine. This is done in the .hal file of your config directory. The standard command

loadrt trivkins

is replaced by

loadrt kinsname

where ”kinsname” is the name of your kins program. A further modification to the .hal
file is required (typically at the end of your initial template file), where we have to set
the offset parameters of the configuration, such as Dx, Dy, Dz, T ool − offset. In our
XYZAC-TRT configuration the entries could be for example:

# set offset parameters

net tool-offset <= motion.tooloffset.z => XYZACkins.Tool-offset

setp XYZACkins.Y-offset 0

setp XYZACkins.Z-offset 20

Three examples of kinematics components, applicable to our XYZAC-TRT, XYZBC-
TRT and XYZBC-SRT configurations, are given in Appendix A: Kinematics compo-
nents.
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9 VISMACH Simulation Models

VISMACH is a library of PYTHON routines to display a dynamic simulation of the CNC
machine on the PC screen. The PYTHON script for a particular machine is loaded in
the .hal file and data to it is passed on by pin connections. Typical entries in the .hal
file are (example for XYZBC-TRT):

loadusr -W ./XYZBCgui

net j0 axis.0.joint-pos-fb XYZBCgui.table-x

net j1 axis.1.joint-pos-fb XYZBCgui.saddle-y

net j2 axis.2.joint-pos-fb XYZBCgui.spindle-z

net j4 axis.4.joint-pos-fb XYZBCgui.tilt-b

net j5 axis.5.joint-pos-fb XYZBCgui.rotate-c

setp XYZBCgui.X-offset -20

setp XYZBCgui.Z-offset -10

net tool-offs => XYZBCgui.Tool-offset

Three examples of VISMACH simulation PYTHON scripts, applicable to our XYZAC-
TRT, XYZBC-TRT and XYZBC-SRT configurations, are given in Appendix B: VISMACH
simulation PYTHON scripts.

10 HAL FILE EXAMPLES

In addition to the normal HAL file entries for 5 joints, some entries are required to pass
data on to the kinematics component and the Vismach script. Here is an example of
these additional entries in the HAL file for the XYZBC-TRT configuration (with negative
offsets - see Fig. 6):

# load RT modules: first one the 5-axis kinematics

loadrt XYZBCkins

....

....

# extras for XYZBC 5 axis config

setp XYZBCkins.X-offset -20

setp XYZBCkins.Z-offset -10

net tool-offs <= motion.tooloffset.z

net tool-offs => XYZBCkins.Tool-offset

loadusr -W ./XYZBCgui

net j0 axis.0.joint-pos-fb XYZBCgui.table-x

net j1 axis.1.joint-pos-fb XYZBCgui.saddle-y

net j2 axis.2.joint-pos-fb XYZBCgui.spindle-z



5 Axis Machine Kinematics 17

net j4 axis.4.joint-pos-fb XYZBCgui.tilt-b

net j5 axis.5.joint-pos-fb XYZBCgui.rotate-c

setp XYZBCgui.X-offset -20

setp XYZBCgui.Z-offset -10

net tool-offs => XYZBCgui.Tool-offset
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12 FIGURES

Figure 10: Table tilting/rotating and Spindle/table tilting configuration
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Figure 11: Spindle tilting/tilting configuration
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Figure 12: Spindle/table tilting/rotary configuration
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13 APPENDIX A: Kinematics Components

13.1 Kinematics component for XYZAC-TRT

/********************************************************************

* Description: XYZACkins.c

* Kinematics for 5 axis mill named ’XYZAC’.

* This mill has a tilting table (A axis) and horizontal rotary

* mounted to the table (C axis).

* with rotary axis offsets

*

* Author: Rudy du Preez

* License: GPL Version 2

*

********************************************************************/

#include "kinematics.h" /* these decls */

#include "posemath.h"

#include "hal.h"

#include "rtapi.h"

#include "rtapi_math.h"

struct haldata {

hal_float_t *Y_offset;

hal_float_t *Z_offset;

hal_float_t *Tool_offset;

} *haldata;

int kinematicsForward(const double *joints,

EmcPose * pos,

const KINEMATICS_FORWARD_FLAGS * fflags,

KINEMATICS_INVERSE_FLAGS * iflags)

{

double dy = *(haldata->Y_offset);

double dz = *(haldata->Z_offset);

double dT = *(haldata->Tool_offset);

double a_rad = joints[3]*M_PI/180;

double c_rad = joints[5]*M_PI/180;

dz = dz + dT;

pos->tran.x = cos(c_rad)*(joints[0]) +

sin(c_rad)*cos(a_rad)*(joints[1] - dy) +

sin(c_rad)*sin(a_rad)*(joints[2] - dz) +

sin(c_rad)*dy;

pos->tran.y = -sin(c_rad)*(joints[0]) +

cos(c_rad)*cos(a_rad)*(joints[1] - dy) +

cos(c_rad)*sin(a_rad)*(joints[2] - dz) +

cos(c_rad)*dy;

pos->tran.z = -sin(a_rad)*(joints[1] - dy) +

cos(a_rad)*(joints[2] - dz) + dz;

pos->a = joints[3];

pos->b = joints[4];

pos->c = joints[5];

return 0;

}

int kinematicsInverse(const EmcPose * pos,

double *joints,

const KINEMATICS_INVERSE_FLAGS * iflags,

KINEMATICS_FORWARD_FLAGS * fflags)

{

double dy = *(haldata->Y_offset);

double dz = *(haldata->Z_offset);

double dT = *(haldata->Tool_offset);

double c_rad = pos->c*M_PI/180;
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double a_rad = pos->a*M_PI/180;

dz = dz + dT;

joints[0] = cos(c_rad)*pos->tran.x -

sin(c_rad)*pos->tran.y;

joints[1] = sin(c_rad)*cos(a_rad)*pos->tran.x +

cos(c_rad)*cos(a_rad)*pos->tran.y -

sin(a_rad)*pos->tran.z -

cos(a_rad)*dy + sin(a_rad)*dz + dy;

joints[2] = sin(c_rad)*sin(a_rad)*pos->tran.x +

cos(c_rad)*sin(a_rad)*pos->tran.y +

cos(a_rad)*pos->tran.z -

sin(a_rad)*dy - cos(a_rad)*dz + dz;

joints[3] = pos->a;

joints[4] = pos->b;

joints[5] = pos->c;

return 0;

}

KINEMATICS_TYPE kinematicsType()

{

return KINEMATICS_BOTH;

}

#include "rtapi.h" /* RTAPI realtime OS API */

#include "rtapi_app.h" /* RTAPI realtime module decls */

#include "hal.h"

EXPORT_SYMBOL(kinematicsType);

EXPORT_SYMBOL(kinematicsInverse);

EXPORT_SYMBOL(kinematicsForward);

MODULE_LICENSE("GPL");

int comp_id;

int rtapi_app_main(void) {

int res = 0;

comp_id = hal_init("XYZACkins");

if(comp_id < 0) return comp_id;

haldata = hal_malloc(sizeof(struct haldata));

if((res = hal_pin_float_new("XYZACkins.Tool-offset", HAL_IN, &(haldata->Tool_offset),

comp_id)) < 0) goto error;

if((res = hal_pin_float_new("XYZACkins.Y-offset", HAL_IO, &(haldata->Y_offset),

comp_id)) < 0) goto error;

if((res = hal_pin_float_new("XYZACkins.Z-offset", HAL_IO, &(haldata->Z_offset),

comp_id)) < 0) goto error;

hal_ready(comp_id);

return 0;

error:

hal_exit(comp_id);

return res;

}

void rtapi_app_exit(void) { hal_exit(comp_id); }

Note that three extra HAL pins have been added: XYZACkins.Tool-offset,
XYZACkins.Y-offset and XYZACkins.Z-offset.
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13.2 Kinematics component for XYZBC-TRT with offsets

/********************************************************************

* Description: XYZBCkins.c

* Kinematics for 5 axis mill named ’XYZBC’.

* This mill has a tilting table (B axis) and horizontal rotary

* mounted to the table (C axis).

*

* Author: Rudy du Preez

* License: GPL Version 2

*

********************************************************************/

#include "kinematics.h" /* these decls */

#include "posemath.h"

#include "hal.h"

#include "rtapi.h"

#include "rtapi_math.h"

struct haldata {

hal_float_t *X_offset;

hal_float_t *Z_offset;

hal_float_t *Tool_offset;

} *haldata;

int kinematicsForward(const double *joints,

EmcPose * pos,

const KINEMATICS_FORWARD_FLAGS * fflags,

KINEMATICS_INVERSE_FLAGS * iflags)

{

double dx = *(haldata->X_offset);

double dz = *(haldata->Z_offset);

double dT = *(haldata->Tool_offset);

double b_rad = joints[4]*M_PI/180;

double c_rad = joints[5]*M_PI/180;

dz = dz + dT;

pos->tran.x = cos(c_rad)*cos(b_rad)*(joints[0] - dx) +

sin(c_rad)*(joints[1]) -

cos(c_rad)*sin(b_rad)*(joints[2] - dz) +

cos(c_rad)*dx;

pos->tran.y = -sin(c_rad)*cos(b_rad)*(joints[0] - dx) +

cos(c_rad)*(joints[1]) +

sin(c_rad)*sin(b_rad)*(joints[2] - dz) -

sin(c_rad)*dx;

pos->tran.z = sin(b_rad)*(joints[0] - dx) +

cos(b_rad)*(joints[2] - dz) +

dz;

pos->a = joints[3];

pos->b = joints[4];

pos->c = joints[5];

return 0;

}

int kinematicsInverse(const EmcPose * pos,

double *joints,

const KINEMATICS_INVERSE_FLAGS * iflags,

KINEMATICS_FORWARD_FLAGS * fflags)

{

double dx = *(haldata->X_offset);

double dz = *(haldata->Z_offset);

double dT = *(haldata->Tool_offset);

dz = dz + dT;

double b_rad = pos->b*M_PI/180;

double c_rad = pos->c*M_PI/180;

double dpx = -cos(b_rad)*dx - sin(b_rad)*dz + dx;

double dpz = sin(b_rad)*dx - cos(b_rad)*dz + dz;
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joints[0] = cos(c_rad)*cos(b_rad)*(pos->tran.x) -

sin(c_rad)*cos(b_rad)*(pos->tran.y) +

sin(b_rad)*(pos->tran.z) + dpx;

joints[1] = sin(c_rad)*(pos->tran.x) +

cos(c_rad)*(pos->tran.y);

joints[2] = -cos(c_rad)*sin(b_rad)*(pos->tran.x) +

sin(c_rad)*sin(b_rad)*(pos->tran.y) +

cos(b_rad)*(pos->tran.z) + dpz;

joints[3] = pos->a;

joints[4] = pos->b;

joints[5] = pos->c ;

return 0;

}

KINEMATICS_TYPE kinematicsType()

{

return KINEMATICS_BOTH;

}

#include "rtapi.h" /* RTAPI realtime OS API */

#include "rtapi_app.h" /* RTAPI realtime module decls */

#include "hal.h"

EXPORT_SYMBOL(kinematicsType);

EXPORT_SYMBOL(kinematicsInverse);

EXPORT_SYMBOL(kinematicsForward);

MODULE_LICENSE("GPL");

int comp_id;

int rtapi_app_main(void) {

int res = 0;

comp_id = hal_init("XYZBCkins");

if(comp_id < 0) return comp_id;

haldata = hal_malloc(sizeof(struct haldata));

if((res = hal_pin_float_new("XYZBCkins.X-offset", HAL_IO, &(haldata->X_offset),

comp_id)) < 0) goto error;

if((res = hal_pin_float_new("XYZBCkins.Z-offset", HAL_IO, &(haldata->Z_offset),

comp_id)) < 0) goto error;

if((res = hal_pin_float_new("XYZBCkins.Tool-offset", HAL_IN, &(haldata->Tool_offset),

comp_id)) < 0) goto error;

hal_ready(comp_id);

return 0;

error:

hal_exit(comp_id);

return res;

}

void rtapi_app_exit(void) { hal_exit(comp_id); }
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13.3 Kinematics component for XYZBC-SRT

/********************************************************************

* Description: sptiltkins.c XYZBCW

* Kinematics for 5 axis tilting spindle router

*

*

* Author: Rudy Preez SA-CNC-CLUB

* License: GPL Version 2

* System: Linux

*

********************************************************************/

#include "kinematics.h" /* these decls */

#include "posemath.h"

#include "hal.h"

#include "rtapi_math.h"

#define d2r(d) ((d)*PM_PI/180.0)

#define r2d(r) ((r)*180.0/PM_PI)

struct haldata {

hal_float_t *tool_length;

hal_float_t *pivot_length;

} *haldata;

int kinematicsForward(const double *joints,

EmcPose * pos,

const KINEMATICS_FORWARD_FLAGS * fflags,

KINEMATICS_INVERSE_FLAGS * iflags)

{

double thB;

double thC;

double Lt;

thB = d2r(joints[4]);

thC = d2r(joints[5]);

Lt = *(haldata->pivot_length) + *(haldata->tool_length);

pos->tran.x = joints[0] - cos(thC)*sin(thB)*Lt;

pos->tran.y = joints[1] - sin(thC)*sin(thB)*Lt;

pos->tran.z = joints[2] - cos(thB)*Lt + Lt;

pos->b = joints[4];

pos->c = joints[5];

pos->w = joints[8];

return 0;

}

int kinematicsInverse(const EmcPose * pos,

double *joints,

const KINEMATICS_INVERSE_FLAGS * iflags,

KINEMATICS_FORWARD_FLAGS * fflags)

{

double thB;

double thC;

double Lt;

thB = d2r(joints[4]);

thC = d2r(joints[5]);

Lt = *(haldata->pivot_length) + *(haldata->tool_length);

joints[0] = pos->tran.x + cos(thC)*sin(thB)*Lt;

joints[1] = pos->tran.y + sin(thC)*sin(thB)*Lt;

joints[2] = pos->tran.z + cos(thB)*Lt - Lt;

joints[4] = pos->b;

joints[5] = pos->c;

joints[8] = pos->w;
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return 0;

}

/* implemented for these kinematics as giving joints preference */

int kinematicsHome(EmcPose * world,

double *joint,

KINEMATICS_FORWARD_FLAGS * fflags,

KINEMATICS_INVERSE_FLAGS * iflags)

{

*fflags = 0;

*iflags = 0;

return kinematicsForward(joint, world, fflags, iflags);

}

KINEMATICS_TYPE kinematicsType()

{

return KINEMATICS_BOTH;

}

#include "rtapi.h" /* RTAPI realtime OS API */

#include "rtapi_app.h" /* RTAPI realtime module decls */

#include "hal.h"

EXPORT_SYMBOL(kinematicsType);

EXPORT_SYMBOL(kinematicsForward);

EXPORT_SYMBOL(kinematicsInverse);

MODULE_LICENSE("GPL");

int comp_id;

int rtapi_app_main(void) {

int result;

comp_id = hal_init("sptiltkins");

if(comp_id < 0) return comp_id;

haldata = hal_malloc(sizeof(struct haldata));

result = hal_pin_float_new("sptiltkins.tool-length", HAL_IN,

&(haldata->tool_length), comp_id);

if(result < 0) goto error;

result = hal_pin_float_new("sptiltkins.pivot-length", HAL_IO,

&(haldata->pivot_length), comp_id);

if(result < 0) goto error;

*(haldata->pivot_length) = 250.0;

hal_ready(comp_id);

return 0;

error:

hal_exit(comp_id);

return result;

}

void rtapi_app_exit(void) { hal_exit(comp_id); }
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14 APPENDIX B: VISMACH Simulation PYTHON Scripts

14.1 XYZAC-TRT model

For our XYZAC-TRT machine the following is an example of a VISMACH script.

#!/usr/bin/python

#----------------------------------------------------------------------------

# Visualization model of the Hermle mill, as modified to 5-axis

# with rotary axes A and C added, with moving knee and rotary axis offsets

# Rudy du Preez, SA-CNC-CLUB, 3/2016

#----------------------------------------------------------------------------

from vismach import *

import hal

import math

import sys

c = hal.component("XYZACgui")

# table-x

c.newpin("table-x", hal.HAL_FLOAT, hal.HAL_IN)

# saddle-y

c.newpin("saddle-y", hal.HAL_FLOAT, hal.HAL_IN)

# head vertical slide

c.newpin("spindle-z", hal.HAL_FLOAT, hal.HAL_IN)

# table-x tilt-b

c.newpin("tilt-a", hal.HAL_FLOAT, hal.HAL_IN)

# rotary table-x

c.newpin("rotate-c", hal.HAL_FLOAT, hal.HAL_IN)

# offsets

c.newpin("Y-offset", hal.HAL_FLOAT, hal.HAL_IN)

c.newpin("Z-offset", hal.HAL_FLOAT, hal.HAL_IN)

c.newpin("Tool-offset", hal.HAL_FLOAT, hal.HAL_IN)

c.ready()

for setting in sys.argv[1:]: exec setting

tooltip = Capture()

tool = Collection([

tooltip,

CylinderZ(0,0.2,6,3),

CylinderZ(6,3,70,3)

])

tool = Translate([tool],0,0,-20)

tool = Color([1,0,0,0], [tool] )

tool = HalTranslate([tool],c,"Tool-offset",0,0,-1)

spindle = Collection([

# spindle nose and/or toolholder

Color([0,0.5,0.5,0], [CylinderZ( 0, 10, 20, 15)]),

# spindle housing

CylinderZ( 20, 20, 135, 20),

])

spindle = Color([0,0.5,0.5,0], [spindle])

spindle = Collection([

tool,

spindle

])

spindle = Translate([spindle],0,0,20)

# spindle motor

motor = Collection([

Color([0,0.5,0.5,0],

[CylinderZ(135,30,200,30)])

])
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motor = Translate([motor],0,200,0)

head = Collection([

spindle,

# head, holds spindle

Color([0,1,0,0], [Box( -30, -30, 60, 30, 240, 135 )]),

motor

])

head = Translate([head],0,0,200)

work = Capture()

ctable = Collection([

work,

CylinderZ(-18, 50, 0, 50),

# cross

Color([1,1,1,0], [CylinderX(-50,1,50,1)]),

Color([1,1,1,0], [CylinderY(-50,1,50,1)]),

# lump on one side

Color([1,1,1,0], [Box( -4, -42, -20, 4, -51, 5)])

])

ctable = HalRotate([ctable],c,"rotate-c",1,0,0,1)

ctable = Color([1,0,1,0], [ctable] )

crotary = Collection([

ctable,

# # rotary table base - part under table

Color([0.3,0.5,1,0], [Box(-50,-50, -30, 50, 50, -18)])

])

crotary = HalTranslate([crotary],c,"Y-offset",0,-1,0)

crotary = HalTranslate([crotary],c,"Z-offset",0,0,-1)

yoke = Collection([

# trunnion plate

Color([1,0.5,0,0], [Box(-65,-40,-35,65,40,-25)]),

# side plate left

Color([1,0.5,0,0], [Box(-65,-40,-35,-55,40,0)]),

# side plate right

Color([1,0.5,0,0], [Box(55,-40,-35,65,40,0)])

])

trunnion = Collection([

Color([1,0.5,0,0],[CylinderX(-78,20,-55,20)]),

Color([1,0.5,0,0],[CylinderX(55,15,70,15)]),

# mark on drive side

Color([1,1,1,0], [Box(-80,-20,-1,-78,20,1)])

])

arotary = Collection([

crotary, yoke,

trunnion

])

arotary = HalRotate([arotary],c,"tilt-a",1,1,0,0)

arotary = HalTranslate([arotary],c,"Y-offset",0,1,0)

arotary = HalTranslate([arotary],c,"Z-offset",0,0,1)

brackets = Collection([

# a bracket left side

Box(-77,-40,-50,-67,40,0),

# a bracket right side

Box(77,-40,-50,67,40,0),

# mounting plate

Box(77,40,-52,-77,-40,-40)

])

brackets = HalTranslate([brackets],c,"Y-offset",0,1,0)

brackets = HalTranslate([brackets],c,"Z-offset",0,0,1)

# main table - for three axis, put work here instead of rotary
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table = Collection([

arotary,

brackets,

# body of table

Box(-150,-50, -69, 150, 50, -52),

# ways

Box(-150,-40, -75, 150, 40, -69)

])

table = HalTranslate([table],c,"table-x",-1,0,0)

table = Color([0.4,0.4,0.4,0], [table] )

saddle = Collection([

table,

#

Box(-75,-53, -105, 75, 53, -73),

])

saddle = HalTranslate([saddle],c,"saddle-y",0,-1,0)

saddle = Color([0.8,0.8,0.8,0], [saddle] )

zslide = Collection([

saddle,

Box(-50, -100, -180, 50, 120, -105),

])

# default Z position is with the workpoint lined up with the toolpoint

zslide = Translate([zslide], 0, 0, 200)

zslide = HalTranslate([zslide],c,"spindle-z",0,0,-1)

zslide = Color([1,1,0,0], [zslide] )

base = Collection([

head,

# base

Box(-120, -100, -250, 120, 160, -100),

# column

Box(-50, 100, -250, 50, 200, 260),

# Z motor

Color([1,1,0,0], [Box(-25,-100,-195,25,-110,-145)]),

# Z lead screw

Color([1,1,0,0], [CylinderZ(-100,15,50,15)])

])

base = Color([0,1,0,0], [base] )

model = Collection([zslide, base])

myhud = Hud()

myhud.show("XYZAC: 5/4/16")

main(model, tooltip, work, 500, hud=myhud)

14.2 XYZBC-TRT model

For our XYZBC-TRT machine the following is an example of a VISMACH script.

#!/usr/bin/python

#------------------------------------------------------------------------------------

# Visualization model of the Hermle mill, as modified to 5-axis

# with rotary axes B and C added, with moving spindle head and rotary axis offsets

#

# Rudy du Preez, SA-CNC-CLUB, 3/2016

#------------------------------------------------------------------------------------

from vismach import *

import hal

import math
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import sys

c = hal.component("XYZBCgui")

# table-x

c.newpin("table-x", hal.HAL_FLOAT, hal.HAL_IN)

# saddle-y

c.newpin("saddle-y", hal.HAL_FLOAT, hal.HAL_IN)

# head vertical slide

c.newpin("spindle-z", hal.HAL_FLOAT, hal.HAL_IN)

# table-x tilt-b

c.newpin("tilt-b", hal.HAL_FLOAT, hal.HAL_IN)

# rotary table-x

c.newpin("rotate-c", hal.HAL_FLOAT, hal.HAL_IN)

c.newpin("Z-offset", hal.HAL_FLOAT, hal.HAL_IN)

c.newpin("X-offset", hal.HAL_FLOAT, hal.HAL_IN)

c.newpin("Tool-offset", hal.HAL_FLOAT, hal.HAL_IN)

c.ready()

for setting in sys.argv[1:]: exec setting

tooltip = Capture()

tool = Collection([

tooltip,

CylinderZ(0,0.2,6,3),

CylinderZ(6,3,70,3)

])

tool = Translate([tool],0,0,-20)

tool = Color([1,0,0,0], [tool] )

tool = HalTranslate([tool],c,"Tool-offset",0,0,-1)

spindle = Collection([

# spindle nose and/or toolholder

Color([0,0.5,0.5,0], [CylinderZ( 0, 10, 20, 15)]),

# spindle housing

CylinderZ( 20, 20, 135, 20),

])

spindle = Color([0,0.5,0.5,0], [spindle])

spindle = Collection([

tool,

spindle

])

spindle = Translate([spindle],0,0,20)

# spindle motor

motor = Collection([

Color([0,0.5,0.5,0],

[CylinderZ(135,30,200,30)])

])

motor = Translate([motor],0,60,0)

head = Collection([

spindle,

# head, holds spindle

Color([0,0.5,0.5,0], [Box( -30, -30, 60, 30, 130, 135 )]),

motor

])

head = Translate([head],0,0,150)

head= HalTranslate([head],c,"spindle-z",0,0,1)

work = Capture()

ctable = Collection([

work,

CylinderZ(-18, 50, 0, 50),

# cross

Color([1,1,1,0], [CylinderX(-50,1,50,1)]),
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Color([1,1,1,0], [CylinderY(-50,1,50,1)]),

# lump on one side

Color([1,1,1,0], [Box( -4, -42, -20, 4, -51, 5)])

])

ctable = HalRotate([ctable],c,"rotate-c",1,0,0,1)

ctable = Color([1,0,1,0], [ctable] )

crotary = Collection([

ctable,

# # rotary table base - part under table

Color([0.3,0.5,1,0], [Box(-50,-50, -30, 50, 50, -18)])

])

crotary = HalTranslate([crotary],c,"X-offset",0,1,0)

crotary = HalTranslate([crotary],c,"Z-offset",0,0,-1)

yoke = Collection([

# trunnion plate

Color([1,0.5,0,0], [Box(-65,-40,-35,65,40,-25)]),

# side plate left

Color([1,0.5,0,0], [Box(-65,-40,-35,-55,40,0)]),

# side plate right

Color([1,0.5,0,0], [Box(55,-40,-35,65,40,0)])

])

trunnion = Collection([

Color([1,0.5,0,0],[CylinderX(-78,20,-55,20)]),

Color([1,0.5,0,0],[CylinderX(55,15,70,15)]),

# mark on drive side

Color([1,1,1,0], [Box(-80,-20,-1,-78,20,1)])

])

arotary = Collection([

crotary, yoke,

trunnion

])

arotary = Rotate([arotary],90,0,0,1)

arotary = HalRotate([arotary],c,"tilt-b",1,0,1,0)

arotary = HalTranslate([arotary],c,"X-offset",1,0,0)

arotary = HalTranslate([arotary],c,"Z-offset",0,0,1)

brackets = Collection([

# a bracket left side

Box(-77,-40,-50,-67,40,0),

# a bracket right side

Box(77,-40,-50,67,40,0),

# mounting plate

Box(77,40,-52,-77,-40,-40)

])

brackets = Rotate([brackets],90,0,0,1)

brackets = HalTranslate([brackets],c,"X-offset",1,0,0)

brackets = HalTranslate([brackets],c,"Z-offset",0,0,1)

# main table - for three axis, put work here instead of rotary

table = Collection([

arotary,

brackets,

# body of table

Box(-150,-50, -69, 150, 50, -52),

# ways

Box(-150,-40, -75, 150, 40, -69)

])

table = HalTranslate([table],c,"table-x",-1,0,0)

table = Color([0.4,0.4,0.4,0], [table] )

saddle = Collection([

table,

#

Box(-75,-53, -105, 75, 53, -73),
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])

saddle = HalTranslate([saddle],c,"saddle-y",0,-1,0)

saddle = Color([0.8,0.8,0.8,0], [saddle] )

yslide = Collection([

saddle,

Box(-50, -100, -180, 50, 120, -105),

])

# default Z position is with the workpoint lined up with the toolpoint

yslide = Translate([yslide], 0, 0, 150)

yslide = Color([0,1,0,0], [yslide] )

base = Collection([

head,

# base

Box(-120, -100, -200, 120, 160, -30),

# column

Box(-50, 120, -200, 50, 220, 360)

])

base = Color([0,1,0,0], [base] )

model = Collection([yslide, base])

myhud = Hud()

myhud.show("XYZBC: 3/4/16")

main(model, tooltip, work, 500, hud=myhud)

14.3 XYZBC-STR model

For our XYZBC-SRT machine the following is an example of a VISMACH script.

#!/usr/bin/PYTHON

#---------------------------------------------------------------------------

# VISMACH 5 axis rotating/tilting spindle router simulation

# Rudy du Preez, SA-CNC-CLUB, 3/2014

#---------------------------------------------------------------------------

from vismach import *

import hal

import math

import sys

# give endpoint Z values and radii

# resulting cylinder is on the Z axis

class HalToolCylinder(CylinderZ):

def __init__(self, comp, *args):

CylinderZ.__init__(self, *args)

self.comp = comp

def coords(self):

return self.comp.tool_length, 3, 0, 3

c = hal.component("sptiltgui")

c.newpin("joint0", hal.HAL_FLOAT, hal.HAL_IN)

c.newpin("joint1", hal.HAL_FLOAT, hal.HAL_IN)

c.newpin("joint2", hal.HAL_FLOAT, hal.HAL_IN)

c.newpin("joint3", hal.HAL_FLOAT, hal.HAL_IN)

c.newpin("joint4", hal.HAL_FLOAT, hal.HAL_IN)

c.newpin("joint5", hal.HAL_FLOAT, hal.HAL_IN)

c.newpin("tool_length", hal.HAL_FLOAT, hal.HAL_IN)

c.newpin("pivot_length", hal.HAL_FLOAT, hal.HAL_IN)

c.ready()

pivot_len = 50
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tool_len = 40

Lt = pivot_len + tool_len

for setting in sys.argv[1:]: exec setting

tooltip = Capture()

tool = Collection([tooltip,

HalToolCylinder(c,"tool_length"),

CylinderZ(tool_len, 30, Lt+70, 30)

])

baxis = CylinderY(-65,10,65,10)

baxis = Translate([baxis],0,0,Lt)

baxis = Collection([tool,

baxis,

])

baxis = Color([1,0,0.5,1],[baxis])

baxis = Translate([baxis],0,0,-Lt)

baxis = HalRotate([baxis],c,"joint4",1,0,1,0)

baxis = Translate([baxis],-130,0,Lt)

yoke = Collection([Box(-30,-32,0, 30,-52,-90),

Box(-30, 32,0, 30, 52,-90),

CylinderZ(0, 56,-15,56)

])

yoke = Translate([yoke],-130,0,Lt+90)

yoke = Color([1,0.5,0,1],[yoke])

caxis = Collection([baxis,

yoke,

])

caxis = Translate([caxis],130,0,0)

caxis = HalRotate([caxis],c,"joint5",1,0,0,1)

caxis = Translate([caxis],-130,0,0)

bmotor = CylinderZ(0,25,60,25)

bmotor = Translate([bmotor],20,30,0)

cmotor = CylinderZ(0,25,60,25)

cmotor = Translate([cmotor],20,-30,0)

zaxis = Collection([cmotor,bmotor,

CylinderZ(15,60,0,60),

Box(50,-60,-50, 80,60,60),

Box(0,-60,15, 50,60,0)

])

zaxis = Translate([zaxis],-130,0,Lt+90)

zaxis = Color([0,1,1,1],[zaxis])

zaxis = Collection([caxis,zaxis,

])

zaxis = Translate([zaxis], 0,0,-150)

zaxis = HalTranslate([zaxis],c,"joint2",0,0,1)

zmotor = CylinderZ(150,25,90,25)

zmotor = Translate([zmotor],10,0,0)

saddle = Collection([zaxis,zmotor,

Box(-10,-50,-100, -50,50,150)

])

saddle = HalTranslate([saddle],c,"joint1",0,1,0)

ybridge = Collection([

Box(-60,255,-350, 60,285,0),

Box(-60,-255,-350, 60,-285,0),

Box(-30,-280,-100, 30,280,0),

Box(-70,255,-350, 70,295,-320),

Box(-70,-255,-350, 70,-295,-320),

])
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ybridge = Color([0,1,0,1],[ybridge])

ybridge = Collection([saddle,ybridge])

ybridge = HalTranslate([ybridge],c,"joint0",1,0,0)

xaxes = Collection([

Box(-500,-300,-400, 500, -250,-350),

Box(-500, 300,-400, 500, 250,-350)

])

xaxes = Color([0,0,1,1],[xaxes])

router = Collection([xaxes,ybridge])

work = Capture()

table = Collection([

work,

Box(-500,-250,-320, 500,250,-365)

])

model = Collection([router, table])

main(model, tooltip, work, 1500)


