MachMaker www.machmaker.pl

INSTRUKCJA INSTALACJII ZADAJNIKA XHC-WHB04B W LINUXCNC NA SYSTEMIE DEBIAN 7 WHEEZY

Do instalacji Zadajnika WHB04B potrzebujemy komputer z zainstalowanym i działającym LinuxCNC na systemie Debian7 i ze stabilnym połączeniem z internetem.

Z urządzeniem firma MachMaker dostarcza spakowany katalog xhc-whb04b-6 DEB7 LCNC2_9.zip. **Należy go rozpakować w wygodnym miejscu (np. na pulpicie).**

Otwieramy terminal i wpisujemy sudo nano /etc/apt/sources.list

Usówamy zawartość otwartego pliku i wklejamy

deb http://archive.debian.org/debian wheezy main contrib non-free
deb-src http://archive.debian.org/debian wheezy main contrib non-free
deb http://archive.debian.org/debian wheezy/updates main contrib non-free
deb-src http://archive.debian.org/debian wheezy/updates main contrib non-free
deb http://archive.debian.org/debian wheezy/updates main contrib non-free
deb-src http://archive.debian.org/debian.security wheezy/updates main contrib non-free
deb-src http://archive.debian.org/debian.security/wheezy/updates main contrib non-free

Zapisujemy (Ctrl + o i enter) i zamykamy (Ctrl + x)

Następnie wpisujemy

sudo apt-get clean

sudo apt-get install debian-archive-keyring

sudo apt-get update -o Acquire::Check-Valid-Until=false

sudo apt-get install dirmngr software-properties-common gnome-commander git usbutils

Podłączamy odbiornik USB naszego zadajnika do gniazda USB komputera. W terminalu wpisujemy następujące polecenie:

lsusb

jann	awra	acaj@jar	nnawra	acaj	:~\$ lsusb	
Bus	003	Device	003:	ID	090c:1000	Silicon Motion, Inc Taiwan (formerly Feiya
echn	olog	y Corp.	.) Fla	ash	Drive	
Bus	003	Device	001:	ID	1d6b:0002	Linux Foundation 2.0 root hub
Bus	007	Device	001:	ID	1d6b:0001	Linux Foundation 1.1 root hub
Bus	006	Device	002:	ID	10ce:eb93	Silicon Labs
Bus	006	Device	001:	ID	ld6b:0001	Linux Foundation 1.1 root hub
Bus	005	Device	002:	ID	89e5:101b	
Bus	005	Device	001:	ID	1d6b:0001	Linux Foundation 1.1 root hub
Bus	001	Device	003:	ID	046d:09b2	Logitech, Inc. Fujitsu Webcam
Bus	001	Device	001:	ID	1d6b:0002	Linux Foundation 2.0 root hub
Bus	004	Device	002:	ID	1199:6832	Sierra Wireless, Inc. MC8780 Device
Bus	004	Device	001:	ID	1d6b:0001	Linux Foundation 1.1 root hub
Bus	002	Device	002:	ID	0c24:000f	Taiyo Yuden Bluetooth Device (V2.0+EDR)
Bus	002	Device	001:	ID	ld6b:0001	Linux Foundation 1.1 root hub
jann	awra	acaj@jar	nnawra	acaj	:~\$	

Wyświetli się lista urządzeń a między innymi nasze urządzenie (zaznaczone w czerwonej ramce). Jeśli urządzenie się nie wyświetla, to należy sprawdzić czy jest poprawnie podłączone lub ewentualnie uruchomić ponownie komputer i powrócić do polecenia lsusb)

W ramce żółtej znajduje się adres naszego urządzenia. W tym przypadku jest to adres 10ce:eb93. Jeśli wyświetli się taki właśnie adres, to nic nie trzeba zmieniać ponieważ taki zapisany jest w pliku konfiguracyjnym. Jeśli natomiast znajduje się tam inny adres, to należy wejść do dostarczonego katalogu xhc-whb04b-6 DEB9 LCNC2_9 i w edytorze tekstu otworzyć plik 99-xhc-whb04b-6.rules.

Należy zmienic wartości odpowiedzialne za adres i zapisać plik: *ATTR{idProduct}=="eb93", ATTR{idVendor}=="10ce", MODE="0666", OWNER="root", GROUP="plugdev"*

Ponieważ na LinuxCNC 2.7 występują problemy z załadowaniem modułu zadajnika XHC, czeka nas teraz instalacja wersji 2.9.0 LinuxCNC. Wczesniej jeszcze zapisujemy np. w formie archiwum aktualną konfigurację (ustawienia) dla swojej maszyny. Następnie otwieramy nowy terminal i wpisujemy:

sudo apt-key adv --keyserver hkp://keys.gnupg.net --recv-key EF1B07FEE0EE663E sudo nano /etc/apt/sources.list.d/linuxcnc-buildbot.list

i wklejamy:

deb http://buildbot.linuxcnc.org/ wheezy master-rt deb-src http://buildbot.linuxcnc.org/ wheezy master-rt

Zapisujemy (Ctrl + o i enter) i zamykamy (Ctrl + x)

sudo apt-get update -o Acquire::Check-Valid-Until=false

sudo apt-get install linuxcnc

Uruchom LinuxCNC z<mark>e s</mark>woją d<mark>zia</mark>łając<mark>ą</mark> konfiguracją.

UWAGA!

Jeśli uruchomimy wbudowany w LinuxCNC kreator np. Stepconf Wizard to nadpisze on plik .ini i trzeba go zaktualizować na nowo.

Uruchamiamy menadżer plików z uprawnieniami administratora wpisując w terminal: *sudo gnome-commander*

Kopiujemy dostarczony plik 99-xhc-whb04b-6.rules do katalogu /etc/udev/rules.d/

Zamykamy gnome-commander

Następnie w terminalu uruchom polecenie sudo udevadm trigger Zamykamy terminal

Uruchamiany nowy terminal w katalogu użytkownika i wpisujemy:

sudo git clone https://github.com/LinuxCNC/linuxcnc linuxcnc-dev **W katalogu użytkownika powstanie nowy katalog** *linuxcnc-dev*

Uruchamiamy menadżer plików z uprawnieniami administratora wpisując w terminal: *sudo gnome-commander*

Kopiujemy dostarczony katalog hc-whb04b-6 do katalogu linuxcnc-dev/src/hal/user_comps/

Przez gnome-commander wchodzimy do katalogu *linuxcnc-dev/src/* **W edytorze tekstu otwieramy plik** *Makefile*

Odszukujemy sekcję *SUBDIRS* i wklejamy ścieżkę do naszego hal

hal/user_comps/xhc-whb04b-6 \

24	SUBDIRS := \
25	libnml/linklist libnml/cms libnml/rcs libnml/inifile libnml/os intf \
26	libnml/nml libnml/buffer libnml/posemath libnml \
27	
28	,
29	rtani/examples/extint rtani/examples/fifo rtani/examples rtani \
30	
31	hal/components hal/drivers hal/drivers/mesa-hostmot2 \
32	hal/user comps/devices hal/user comps/mb2hal \
33	hal/user comps hal/user comps/vismach hal/user comps/vfs11 vfd hal/classicladder hal/util
34	hal/user comps/vfdb vfd hal/user comps/wi200 vfd \
35	hal/user_comps/huanyang-vfd
36	hal/user_comps/xbc-wbb04h-6 \
37	
38	emc/usr intf/axis emc/usr intf/touchy emc/usr intf/stepconf emc/usr intf/nocconf \
30	emc/usr_intf/oremlin_emc/usr_intf/oscreen_emc/usr_intf/ovui_emc/usr_intf/otvon
40	emc/usr_intf/greaccapy)
41	emc/usr_intf emc/nml intf emc/task emc/intask emc/kinematics emc/th emc/cantern \
42	emc/ustion emc/ini emc/rs274ngc emc/cai emc emc/uthendices emc/th emc/canterp (
13	emc/motion_logger \
. 4.3	

Zapisujemy i zamykamy plik Makefile.

Zamykamy gnome-commander

Otwieramy nowy terminal i wklejamy kolejno polecenia, zatwierdzamy enterem, potwierdzamy jeśli konieczne.

sudo apt-get install autoconf automake pkg-config libgtk-3-dev autoconf autogen libmodbus-dev libusb-1.0-0-dev

sudo apt-get update -o Acquire::Check-Valid-Until=false sudo apt-get install libboost-python-dev netcat libmodbus-dev yapps2 libudev-dev tcl8.5-dev tk8.5-dev libreadline-gplv2-dev asciidoc dblatex docbook-xsl dvipng graphviz groff imagemagick inkscape python-lxml source-highlight texlive-extra-utils texlive-font-utils texlive-fonts-recommended texlivelang-cyrillic texlive-lang-french texlive-lang-german texlive-lang-polish texlive-lang-spanish texlivelatex-recommended w3c-linkchecker xsltproc python-dev libxmu-dev libglu1-mesa-dev libgl1-mesa-dev libgtk2.0-dev intltool python3-tk libusb-1.0-0-dev sudo apt-get install linux-headers-\$(uname -r)

cd linuxcnc-dev/src sudo ./autogen.sh sudo ./configure sudo make sudo make setuid Uruchamiamy menadżer plików z uprawnieniami administratora wpisując w terminal:

sudo gnome-commander

Kopiujemy wygenerowany plik bin *xhc-whb04b-6* **z katalogu** */linuxcnc-dev/bin/* **do katalogu** */usr/ bin/*

zamykamy gnome-commander

Zamykamy wszystko i otwieramy nowy terminal

W terminalu wpisujemy:

sudo udevadm trigger

Może to spowodować chwilowe przyblokowanie systemu, należy cierpliwie poczekać. Następnie wklejamy w terminal:

halrun

Jeśli halrun będzie działać, wklejamy następnie

loadusr xhc-whb04b-6

```
jannawracaj@jannawracaj:~$ sudo udevadm trigger
[sudo] hasło użytkownika jannawracaj:
jannawracaj@jannawracaj:~$ halrun
halcmd: loadusr xhc-whb04b-6
```

i klikamy Enter.

Uruchamiamy nasz zadajnik i kręcimy kółkiem lub wciskamy przyciski, powinny się pojawiać w terminalu sygnały od zadajnika.

```
ode=0x00}
pndnt handwheel total counts {counts=0 activeCounter=0 isLeadActive=0}
pndnt button pressed event metaButton={key={code=0x0b text='s-on-off' altText=
macro-8'} modifier={code=0x00 text='' altText=''}}
pndnt handwheel total counts {counts=0 activeCounter=0 isLeadActive=0}
pndnt button released event metaButton={key={code=0x0b text='s-on-off'
                                                                       altText=
macro-8'} modifier={code=0x00 text='' altText=''}}
pndnt handwheel total counts {counts=0 activeCounter=0 isLeadActive=0}
pndnt button pressed event metaButton={key={code=0x09 text='safe-z' altText='m
cro-6'} modifier={code=0x00 text='' altText=''}}
pndnt handwheel total counts {counts=0 activeCounter=0 isLeadActive=0}
pndnt button released event metaButton={key={code=0x09 text='safe-z' altText='m
cro-6'} modifier={code=0x00 text='' altText=''}}
pndnt handwheel total counts {counts=0 activeCounter=0 isLeadActive=0}
pndnt button pressed event metaButton={key={code=0x03 text='start-pause' altTe
t='macro-13'} modifier={code=0x00 text='' altText=''}}
pndnt handwheel total counts {counts=0 activeCounter=0 isLeadActive=0}
pndnt button released event metaButton={key={code=0x03 text='start-pause' altTe
t='macro-13'} modifier={code=0x00 text='' altText=''}}
pndnt handwheel total counts {counts=0 activeCounter=0 isLeadActive=0}
```

Naciskamy ctrl + c i zamykamy terminal.

Kopiujemy dostarczony plik *xhc-whb04b-6.hal* do swojego katalogu gdzie mamy ustawienia frezarki (tam gdzie między innymi znajduje się plik .ini)

Otwieramy w edytorze tekstu swój plik .ini i do sekcji [HAL] wklejamy

HALFILE = xhc-whb04b-6.hal oraz HALUI = halui

58 [HAL] 59 HALUI = halui 60 HALFILE = moja-frezarka.hal 61 HALFILE = custom.hal 62 HALFILE = xhc-whb04b-6.hal 63 POSTGUI_HALFILE = custom_postgui.hal

Do sekcji [HALUI] wklejamy

MDI COMMAND=(debuq,00) MDI COMMAND=(*debuq*,*macro1*) *MDI_COMMAND=(debug,macro2) MDI COMMAND*=(*debuq*,*macro3*) *MDI COMMAND*=(*debuq*,*macro4*) MDI_COMMAND=G1 G53 X0 Y0 Z0 F4000 *MDI COMMAND*=(*debuq*,*macro6*) MDI_COMMAND=G1 X0 Y0 Z0 F4000 *MDI COMMAND*=(*debuq*,*macro8*) *MDI_COMMAND=(debug,macro9) MDI_COMMAND=(debuq,macro10) MDI_COMMAND=(debug,macro11) MDI_COMMAND=(debuq,macro12) MDI_COMMAND=(debug,macro13) MDI COMMAND*=(*debug*,*macro14*) MDI_COMMAND=(debuq,macro15) *MDI COMMAND=(debuq,macro16)* MDI_COMMAND=G1 G53 Z0 F4000 MDI COMMAND=(debug,macro17) *MDI_COMMAND=(debug,macro18)* MDI_COMMAND=(debug,macro19)

66	5 [HALUI]
6	MDI_COMMAND=(debug,00)
6	MDI_COMMAND=(debug,macro1)
6	MDI_COMMAND=(debug,macro2)
7	MDI_COMMAND=(debug,macro3)
7	MDI COMMAND=(debug,macro4)
7:	MDI_COMMAND=G1 G53 X0 Y0 Z0 F4000
7.	MDI_COMMAND=(debug,macro6)
7.	MDI COMMAND=G1 X0 Y0 Z0 F4000
7	MDI COMMAND=(debug,macro8)
7	MDI COMMAND=(debug,macro9)
7	MDI COMMAND=(debug,macro10)
7	MDI COMMAND=(debug,macro11)
7	MDI COMMAND=(debug,macro12)
8	MDI_COMMAND=(debug,macro13)
8	MDI COMMAND=(debug,macro14)
8	MDI_COMMAND=(debug,macro15)
8	MDI_COMMAND=(debug,macro16)
8	MDI COMMAND=G1 G53 Z0 F4000
8	MDI_COMMAND=(debug,macro17)
8	MDI_COMMAND=(debug,macro18)
8	MDI COMMAND=(debug,macro19)

Nastęnie należy zaktualizować sekcję [DISPLAY]

Jeśli nie wiesz co ustawić, na początek po prostu zamieć to co masz w sekcji DISPLAY na następujący kod:

```
[DISPLAY]
DISPLAY = axis
POSITION_OFFSET = RELATIVE
POSITION_FEEDBACK = ACTUAL
MIN_FEED_OVERRIDE = 0.000000
MAX\_FEED\_OVERRIDE = 1.200000
MAX SPINDLE OVERRIDE = 1.5
MIN_SPINDLE_OVERRIDE = 0.1
INTRO_GRAPHIC = linuxcnc.gif
INTRO TIME = 5
PROGRAM_PREFIX = /home/cnc/linuxcnc/nc_files
INCREMENTS = 5mm 1mm .5mm .1mm .05mm .01mm .005mm
POSITION_FEEDBACK = ACTUAL
DEFAULT_LINEAR_VELOCITY = 6.000000
MAX_LINEAR_VELOCITY = 83.3333
MIN LINEAR VELOCITY = 0.500000
DEFAULT_ANGULAR_VELOCITY = 12.000000
MAX_ANGULAR_VELOCITY = 180.000000
MIN_ANGULAR_VELOCITY = 1.6666667
EDITOR = qedit
GEOMETRY = xyz
```

Sprawdzamy jeszcze, czy mamy ustawioną sekwencję bazowania. W pliku ini definiuje się te w dodając parametr *HOME_SEQUENCE* dla każdej osi. Jeśli w ustawieniach twojej maszyny jest już takie ustawienie to nie musisz nic robić. Jeśli natomiast nie masz ustawionych sekwencji bazowania wklej następującą wartość dla każdej z osi: *HOME_SEQUENCE* = 0

[JOINT_0] TYPE = LINEAR HOME = 0.0 MAX_VELOCITY = 25.0 MAX_ACCELERATION = 750.0 STEPGEN_MAXACCEL = 937.5 SCALE = 80.0 FERROR = 1 MIN_FERROR = .25 MIN_LIMIT = -0.001 MAX_LIMIT = 200.0 HOME_OFFSET = 0.0 HOME_SEQUENCE = 0

۲

۲

[AXIS_Y] MIN_LIMIT = -0.001 MAX_LIMIT = 200.0 MAX_VELOCITY = 25.0 MAX_ACCELERATION = 750.0

[JOINT_1] TYPE = LINEAR HOME = 0.0 MAX_VELOCITY = 25.0 MAX_ACCELERATION = 750.0 STEPGEN_MAXACCEL = 937.5 SCALE = 80.0 FERROR = 1 MIN_FERROR = .25 MIN_LIMIT = -0.001 MAX_LIMIT = 200.0 HOME_OFFSET = 0.0 HOME_SEQUENCE = 0

[AXIS_Z] MIN_LIMIT = -100.0 MAX_LIMIT = 0.001 MAX_VELOCITY = 25.0 MAX_ACCELERATION = 750.0

[JOINT_2] TYPE = LINEAR HOME = 0.0 MAX_VELOCITY = 25.0 MAX_ACCELERATION = 750.0 STEPGEN_MAXACCEL = 937.5 SCALE = 80.0 FERROR = 1 MIN_FERROR = .25 MIN_LIMIT = -100.0 MAX_LIMIT = 0.001 HOME OFFSET = 0.0 MOME SEQUENCE = 0

Zapisz i zamknij plik .ini. Uruchom LinuxCNC, zadajnik powinien już działać prawidłowo.