
Okay, I have reviewed your INI and HAL files along with the LinuxCNC documentation. There
are several errors and areas needing correction, particularly regarding the interaction between
LinuxCNC and the Remora firmware on your NVEM controller.
Here are the corrected files and the necessary extra steps:

Corrected my-lathe.ini

Corrected INI file for a standard XZ Lathe using Remora​
[EMC]​
Version matches the documentation provided​
VERSION = 1.1​
Standard task executable​
TASK = milltask​
COORDINATES should match the physical axes (XZ for typical lathe)​
COORDINATES = XZ​
KINEMATICS should match COORDINATES​
KINEMATICS = trivkins coordinates=XZ​
​
[DISPLAY]​
Use axis GUI​
DISPLAY = axis​
Add LATHE = 1 for correct lathe display in AXIS​
LATHE = 1​
POSITION_OFFSET = RELATIVE​
POSITION_FEEDBACK = ACTUAL​
MAX_FEED_OVERRIDE = 1.5​
MAX_SPINDLE_OVERRIDE = 1.5​
DEFAULT_LINEAR_VELOCITY = 10 # Units/sec, adjust as needed​
MAX_LINEAR_VELOCITY = 100 # Units/sec, adjust as needed​
MIN_LINEAR_VELOCITY = 0.1 # Units/sec, adjust as needed​
EDITOR = gedit​
Use ~ for home directory path​
OPEN_FILE = ~/linuxcnc/nc_files​
PROGRAM_PREFIX = ~/linuxcnc/nc_files​
​
[RS274NGC]​
PARAMETER_FILE = linuxcnc.var​
Set default plane to XZ for lathe ​
RS274NGC_STARTUP_CODE = G18 G21 G90 G40 G49 G64 P0.001 G80 G94 G97​
Ensure 'macros' directory exists in your config folder or provide
full path​
SUBROUTINE_PATH = macros​
Keep remapping if m53.ngc and m54.ngc exist and are needed​
REMAP=M53 modalgroup=10 ngc=m53​
REMAP=M54 modalgroup=10 ngc=m54​
​
Add [EMCMOT] section for motion controller timing​
[EMCMOT]​

Base period for software stepgen (if used, less critical with
Remora)​
Adjust based on latency test if needed, but Remora handles fast
pulses​
BASE_PERIOD = 50000​
Servo period for motion planning and Remora communication (1ms =
1000000ns is common)​
SERVO_PERIOD = 1000000​
​
[HAL]​
List HAL files to load​
HALFILE = custom.hal​
Load post-GUI file if you have GUI-specific HAL components (like
PyVCP/GladeVCP)​
POSTGUI_HALFILE = custom_postgui.hal​
Load HAL user interface component if using external buttons/MPG
connected via HALUI​
HALUI = halui​
Remove incorrect STEPGEN entry​
​
[TRAJ]​
Match EMC section​
COORDINATES = XZ​
LINEAR_UNITS = mm​
ANGULAR_UNITS = deg # Only relevant if you add rotary axes later​
These velocities/accelerations are for the Trajectory planner​
Ensure they are achievable by ALL axes combined. Units are per
SECOND.​
Adjust these values based on testing. 50 mm/s = 3000 mm/min. 500
mm/s^2 is moderate.​
DEFAULT_LINEAR_VELOCITY = 20​
MAX_LINEAR_VELOCITY = 50​
DEFAULT_LINEAR_ACCELERATION = 500​
MAX_LINEAR_ACCELERATION = 1000​
​
[KINS]​
Match EMC section​
KINEMATICS = trivkins coordinates=XZ​
Set JOINTS to the number of controlled axes (2 for XZ lathe)​
JOINTS = 2​
​
--- Define Axis Sections ---​
Max velocity/accel must be >= corresponding JOINT max velocity/accel​
[AXIS_X]​
MAX_VELOCITY = 50​
MAX_ACCELERATION = 1000​
MIN_LIMIT = -50 # IMPORTANT: Set based on your machine's X travel
limit​

MAX_LIMIT = 5 # IMPORTANT: Set based on your machine's X travel
limit​
​
[AXIS_Z]​
MAX_VELOCITY = 50​
MAX_ACCELERATION = 1000​
MIN_LIMIT = -5 # IMPORTANT: Set based on your machine's Z travel
limit​
MAX_LIMIT = 200 # IMPORTANT: Set based on your machine's Z travel
limit​
​
--- Define Joint Sections ---​
Must have one section per joint defined in [KINS]JOINTS​
[JOINT_0] # Corresponds to X axis in trivkins coordinates=XZ​
TYPE = LINEAR​
IMPORTANT: Calculate SCALE based on motor steps, microstepping,
gearing, leadscrew pitch​
Example: 200 step/rev * 16 microstep / 5mm/rev = 640 steps/mm​
SCALE = 640.0​
MAX_VELOCITY = 50 # mm/sec - Tune this value!​
MAX_ACCELERATION = 1000 # mm/sec^2 - Tune this value!​
Set MIN/MAX_LIMIT slightly wider than AXIS limits to avoid issues​
MIN_LIMIT = -51​
MAX_LIMIT = 6​
FERROR = 1 # Max following error in mm​
MIN_FERROR = 0.25 # Min following error in mm​
--- Homing settings for JOINT_0 (X) ---​
IMPORTANT: Configure these based on your switch locations and
desired home position​
HOME = 0.0 # Final position after homing​
HOME_OFFSET = 5.5 # Position coordinate when switch/index
triggers (relative to final machine zero)​
HOME_SEARCH_VEL = -20.0 # Speed/direction to search for switch
(-ve moves towards MIN_LIMIT)​
HOME_LATCH_VEL = 5.0 # Speed/direction to approach switch
accurately after backing off​
HOME_USE_INDEX = NO # Set YES if using encoder index pulse​
HOME_IGNORE_LIMITS = YES # Set YES if home switch is also a
limit switch​
HOME_SEQUENCE = 0 # Homing order (0 or 1 for XZ lathe,
e.g., home Z first)​
​
[JOINT_1] # Corresponds to Z axis in trivkins coordinates=XZ​
TYPE = LINEAR​
IMPORTANT: Calculate SCALE based on motor steps, microstepping,
gearing, leadscrew pitch​
SCALE = 640.0​
MAX_VELOCITY = 50 # mm/sec - Tune this value!​

MAX_ACCELERATION = 1000 # mm/sec^2 - Tune this value!​
Set MIN/MAX_LIMIT slightly wider than AXIS limits​
MIN_LIMIT = -6​
MAX_LIMIT = 201​
FERROR = 1​
MIN_FERROR = 0.25​
--- Homing settings for JOINT_1 (Z) ---​
IMPORTANT: Configure these based on your switch locations and
desired home position​
HOME = 200.0​
HOME_OFFSET = 200.5​
HOME_SEARCH_VEL = -20.0​
HOME_LATCH_VEL = 5.0​
HOME_USE_INDEX = NO​
HOME_IGNORE_LIMITS = YES​
HOME_SEQUENCE = 1 # Home Z after X (or vice-versa if X=1, Z=0)​
​
--- Optional Spindle Section ---​
Add this section if Remora controls your spindle speed​
[SPINDLE_0]​
MAX_FORWARD_VELOCITY = 4000 # Max RPM​
MIN_FORWARD_VELOCITY = 300 # Min RPM​
Add OUTPUT_SCALE, PWM settings etc. if using Remora PWM for speed
control​
​
Removed invalid sections: [NUM_MOTORS], [AXES], [JOINTS], [OUTPUTS]​

Corrected custom.hal

Corrected HAL config file for NVEM controller board running Remora
firmware​
Configured for 2 joints (X, Z axes) for a standard lathe​
​
Load the Remora Ethernet interface component ​
Ensure the component name matches your Remora setup (e.g.,
remora-eth)​
Use '-W' to wait for the component to be ready ​
loadusr -W remora-eth remora-eth​
​
--- Base/Servo Thread Setup ---​
Create threads (adjust periods if needed, match INI [EMCMOT])​
loadrt threads name1=servo-thread period=1000000 # 1ms servo thread​
​
Add Remora functions to the servo thread​
IMPORTANT: Verify these function names with Remora documentation​
Common names might be remora.read / remora.update / remora.write​
addf remora.read servo-thread​

addf remora.write servo-thread​
addf motion-controller servo-thread # Motion controller must be
added​
​
--- Estop and Enable Chain ---​
Connect LinuxCNC enable/reset to Remora enable/reset ​
net user-enable-out <= iocontrol.0.user-enable-out​
net user-request-enable <= iocontrol.0.user-request-enable =>
remora.reset​
​
Connect Remora status back to LinuxCNC estop input chain ​
This assumes remora.status reflects the board's E-Stop state​
net remora-status <= remora.status => iocontrol.0.emc-enable-in​
If using an external E-Stop button connected to a Remora input
(e.g., input 11):​
net estop-ext <= remora.input.11.in => iocontrol.0.emc-enable-in​
Make sure only ONE signal drives iocontrol.0.emc-enable-in​
​
--- Joint/Axis Connections ---​
Connect LinuxCNC JOINT commands/feedback to Remora STEPGEN pins​
IMPORTANT: Verify Remora stepgen numbers (e.g., 00, 02) match your
Remora config for X and Z​
​
Joint 0 (X Axis) -> Remora Stepgen 00 (Example)​
net x-pos-cmd joint.0.motor-pos-cmd => remora.stepgen.00.position-cmd
Corrected ​
net x-pos-fb joint.0.motor-pos-fb <= remora.stepgen.00.position-fb #
Corrected ​
net x-enable joint.0.amp-enable-out => remora.stepgen.00.enable #
Corrected ​
​
Joint 1 (Z Axis) -> Remora Stepgen 02 (Example)​
net z-pos-cmd joint.1.motor-pos-cmd => remora.stepgen.02.position-cmd
Corrected​
net z-pos-fb joint.1.motor-pos-fb <= remora.stepgen.02.position-fb #
Corrected​
net z-enable joint.1.amp-enable-out => remora.stepgen.02.enable #
Corrected​
​
Enable Remora board when motion is enabled (connects ALL joint
enables)​
net motion-enable <= joint.0.amp-enable-out​
net motion-enable <= joint.1.amp-enable-out​
net motion-enable => remora.enable # Assumes remora.enable enables all
outputs ​
​
--- Spindle Connections (Example, uncomment and modify if needed)
---​

Spindle Feedback via Remora Encoder 00 (Example) ​
net spindle-velocity <= remora.encoder.00.velocity => spindle.0.revs​
net spindle-velocity => spindle.0.speed-in # Use spindle.0.revs for
feedback if possible​
​
Spindle Speed Control via Remora PWM 00 (Example)​
setp remora.pwm.00.scale [SPINDLE_0]OUTPUT_SCALE # Set scale in INI​
net spindle-cmd-rpm <= spindle.0.speed-out-abs =>
remora.pwm.00.value​
net spindle-on <= spindle.0.on => remora.pwm.00.enable​
​
Spindle Phase/Index for Threading (if encoder connected)​
net spindle-index-enable <=> spindle.0.index-enable​
net spindle-phase-a <= remora.encoder.00.phase-A​
net spindle-phase-b <= remora.encoder.00.phase-B​
net spindle-phase-z <= remora.encoder.00.phase-Z​
​
--- MPG Handwheel (Example using Remora Encoder 01) --- ​
Connect encoder counts to HALUI counts input​
net mpg-counts <= remora.encoder.01.count => halui.axis.jog-counts #
Connect to appropriate halui jog counts pin​
​
Enable MPG encoder only when in manual mode and correct axis
selected (Example for X)​
Requires additional logic components (e.g., and2)​
loadrt and2 count=1​
addf and2.0 servo-thread​
net mpg-enable-manual <= halui.mode.is-manual​
net mpg-enable-axis <= halui.axis.x.is-selected # Check specific
halui pin name​
net mpg-enable mpg-enable-manual mpg-enable-axis => and2.0.in0
and2.0.in1​
net mpg-enable and2.0.out => remora.encoder.01.enable​
​
--- Limit and Home Switches ---​
IMPORTANT: Connect physical switches to Remora inputs and configure
Remora firmware mapping.​
Then, connect the Remora input pins to the corresponding LinuxCNC
joint limit/home pins.​
Replace XX with the correct Remora input pin numbers configured for
your hardware.​
​
Example for Joint 0 (X)​
net x-home-sw <= remora.input.XX.in => joint.0.home-sw-in​
net x-neg-limit <= remora.input.XX.in => joint.0.neg-lim-sw-in​
net x-pos-limit <= remora.input.XX.in => joint.0.pos-lim-sw-in​
​
Example for Joint 1 (Z)​

net z-home-sw <= remora.input.XX.in => joint.1.home-sw-in​
net z-neg-limit <= remora.input.XX.in => joint.1.neg-lim-sw-in​
net z-pos-limit <= remora.input.XX.in => joint.1.pos-lim-sw-in​
​
--- Other I/O (Examples) ---​
Coolant Pins (Example using Remora Output XX)​
net flood-cmd <= iocontrol.0.coolant-flood => remora.output.XX.out​
net mist-cmd <= iocontrol.0.coolant-mist => remora.output.XX.out​
​
Removed incorrect 'loadusr -W stepgen' and related 'setp' lines.​

Explanation of Major Corrections:

●​ INI File:
○​ Standardized sections like [EMC], [TASK], [HAL], [TRAJ], [KINS].
○​ Corrected COORDINATES, KINEMATICS, and JOINTS for a standard XZ lathe.
○​ Added the required LATHE = 1 for the AXIS GUI.
○​ Added standard [EMCMOT] section for timing.
○​ Removed non-standard sections ([NUM_MOTORS], [AXES], etc.).
○​ Added proper [AXIS_X], [AXIS_Z], [JOINT_0], [JOINT_1] sections with

placeholders for crucial machine-specific parameters (SCALE, Limits, Homing).
○​ Corrected potentially extreme velocity/acceleration values to more common starting

points. You must tune these.
○​ Added G18 (XZ plane selection) to the startup codes.

●​ HAL File:
○​ Removed the incorrect loading and configuration of the userspace stepgen

component. Remora handles the step generation based on commands sent to its
HAL pins.

○​ Corrected net commands to connect LinuxCNC joint.N.* pins to the appropriate
remora.stepgen.##.* pins for position commands, feedback, and enables.

○​ Added example addf commands to link Remora functions to the servo-thread (you
need to verify the exact function names from Remora documentation).

○​ Corrected the E-stop logic example and noted the potential conflict.
○​ Added placeholder net commands for limit/home switches and spindle control,

emphasizing the need for user configuration based on hardware and Remora setup.
○​ Added a net motion-enable example connecting joint enables to the main Remora

enable pin.

Extra Steps You Need to Take:

1.​ Verify Machine Type: Confirm if your machine is a standard XZ lathe or has a C-axis
(mill-turn). The corrections assume a standard XZ lathe. If it's different, the INI
(COORDINATES, KINEMATICS, JOINTS) and HAL (joint./axis. connections) will need
significant changes.

2.​ Remora Configuration: This is critical. The HAL file assumes specific Remora pins exist
(e.g., remora.stepgen.00, remora.stepgen.02, remora.encoder.00, remora.input.11,
remora.enable, remora.status, remora.reset). You must configure your Remora firmware
(likely via its own configuration file or interface) to map these functions to the correct
physical pins on your NVEM board according to your wiring.

3.​ HAL Function Names: Find the correct function names provided by your remora-eth
component (e.g., remora.read, remora.write, remora.update) and ensure they are added
to the servo-thread using addf commands in custom.hal. The provided names are
examples.

4.​ Hardware Wiring: Double-check that your motors, encoders, limit/home switches, E-stop,
spindle interface, MPG, etc., are physically wired to the NVEM pins corresponding to your
Remora configuration and the pins used in the corrected custom.hal file.

5.​ INI Parameter Values:
○​ SCALE: Accurately calculate the SCALE value for [JOINT_0] and [JOINT_1] based

on your motor steps/revolution, microstepping setting on the driver, gear/pulley
ratios, and leadscrew pitch (mm per revolution).

○​ Limits: Measure your machine's travel range and set MIN_LIMIT and MAX_LIMIT
accurately in both the [AXIS_L] and [JOINT_n] sections. Joint limits should be
slightly wider than axis limits.

○​ Homing: Configure all HOME_... variables in the [JOINT_n] sections based on your
switch locations, desired final home position, and homing direction/speed. Pay
close attention to HOME_OFFSET.

○​ Velocity/Acceleration: Start with the provided conservative values for
MAX_VELOCITY and MAX_ACCELERATION in [TRAJ], [AXIS_L], and [JOINT_n]
sections and carefully tune them upwards by testing later.

○​ FERROR/MIN_FERROR: These define allowable following error. Start with values
like 1 and 0.25 respectively for mm units.

6.​ HAL Limit/Home/Spindle Connections: Edit the commented-out sections in custom.hal
to connect the actual remora.input.XX.in pins (for switches) and remora.encoder/pwm.XX
pins (for spindle) based on your Remora configuration and wiring.

7.​ Latency Test: Run the latency test (latency-test in terminal) for an extended period (15+
minutes) while stressing the PC (moving windows, copying files). Ensure the
SERVO_PERIOD in [EMCMOT] is significantly larger than the maximum jitter reported.
1ms (1000000ns) is usually safe with hardware step generation like Remora.

8.​ Testing and Tuning:
○​ Start LinuxCNC. Address any immediate HAL or INI errors reported.
○​ Use HAL tools (halshow, halmeter) to verify signals (E-stop, enables, limits) before

attempting to enable the machine.
○​ Test homing for each axis individually. Verify direction, speed, and final position.
○​ Carefully test jogging and small G-code moves, gradually increasing speed and

acceleration limits while listening for motor stalls or lost steps. Tune
MAX_VELOCITY and MAX_ACCELERATION.

9.​ Remap Files: If you kept the REMAP lines in the INI file, ensure the corresponding .ngc
files (m53.ngc, m54.ngc) exist in the directory specified by SUBROUTINE_PATH (macros
in this case).

Take these steps carefully, especially verifying the Remora configuration and physical wiring
against the corrected HAL file. Good luck!

	Corrected my-lathe.ini
	Corrected custom.hal
	Extra Steps You Need to Take:

